Лекция 5. Многослойные персептроны
В этой главе мы представим вашу первую по-настоящему глубокую сеть. Простейшие глубокие сети называются многослойными персептронами, и они состоят из нескольких слоев нейронов, каждый из которых полностью связан с нейронами нижнего уровня (от которого они получают входные данные) и верхних слоев (на которые они, в свою очередь, влияют). Когда мы обучаем высокопроизводительные модели, мы рискуем переобучиться. Таким образом, нам нужно будет дать вам первое подробное введение в понятия переобучения, неполной подгонки и выбора модели. Чтобы помочь вам бороться с этими проблемами, мы познакомим вас с методами регуляризации, такими как снижение веса и отказ от занятий. Мы также обсудим вопросы, касающиеся числовой стабильности и инициализации параметров, которые являются ключевыми для успешного обучения глубоких сетей. Мы стремимся дать вам четкое представление не только о концепциях, но и о практике использования глубоких сетей.
В конце этой главы мы применим то, что мы уже представили, к реальному случаю: прогнозирование цен на жилье. Мы переносим вопросы, касающиеся вычислительной производительности, масштабируемости и эффективности наших моделей, в следующие главы.
5.1. Многослойные персептроны
В главе 3 мы познакомились с регрессией softmax (раздел 3.4), реализуя алгоритм с нуля (раздел 3.6) и используя API высокого уровня (раздел 3.7), а также обучающие классификаторы распознавать 10 категорий одежды из изображений с низким разрешением. Попутно мы научились обрабатывать данные, преобразовывать наши выходные данные в допустимое распределение вероятностей, применять подходящую функцию потерь и минимизировать ее по отношению к параметрам нашей модели. Теперь, когда мы освоили эту механику в контексте простых линейных моделей, мы можем приступить к исследованию глубоких нейронных сетей, сравнительно богатого класса моделей, которым в первую очередь посвящен этот курс.
5.1.1. Скрытые слои
Мы описали аффинное преобразование в разделе 3.1.1, которое представляет собой линейное преобразование, добавленное смещением. Для начала вспомните архитектуру модели, соответствующую нашему примеру регрессии softmax, показанному на рис. 3.4.1. Эта модель отображала наши входы напрямую в наши выходы с помощью одного аффинного преобразования, за которым следовала операция softmax. Если бы наши метки действительно были связаны с нашими входными данными аффинным преобразованием, тогда этого подхода было бы достаточно. Но линейность в аффинных преобразованиях - сильное предположение.
5.1.1.1. Линейные модели могут повести не так.
Например, линейность подразумевает более слабое предположение о монотонности: любое увеличение нашей функции должно либо всегда вызывать увеличение выхода нашей модели (если соответствующий вес положительный), либо всегда вызывать уменьшение выхода нашей модели (если соответствующий вес отрицательный). Иногда это имеет смысл. Например, если бы мы пытались предсказать, выплатит ли физическое лицо ссуду, мы могли бы разумно представить, что при прочих равных условиях кандидат с более высоким доходом всегда с большей вероятностью выплатить, чем заявитель с более низким доходом. Хотя эта взаимосвязь является монотонной, она, вероятно, не связана линейно с вероятностью погашения ссуды.
Увеличение дохода с 0 до 50 тысяч, вероятно, соответствует большему увеличению вероятности выплаты, чем увеличение с 1 миллиона до 1,05 миллиона. Один из способов справиться с этим может заключаться в предварительной обработке наших данных, чтобы линейность стала более правдоподобной, например, используя логарифм дохода в качестве нашей характеристики.
Обратите внимание, что мы легко можем найти примеры, нарушающие монотонность. Скажем, например, что мы хотим предсказать вероятность смерти на основе температуры тела. Для людей с температурой тела выше 37° C (98,6° F) более высокие температуры указывают на больший риск. Однако для людей с температурой тела ниже 37° C более высокие температуры указывают на меньший риск! В этом случае мы также можем решить проблему с помощью некоторой умной предварительной обработки. А именно, мы могли бы использовать расстояние от 37° C в качестве нашей характеристики.
Но как насчет классификации изображений кошек и собак? Если увеличение интенсивности пикселя в местоположении (13, 17) всегда увеличивает (или всегда уменьшает) вероятность того, что изображение отображает собаку? Использование линейной модели соответствует неявному предположению, что единственное требование для различения кошек и собак - это оценка яркости отдельных пикселей. Такой подход обречен на провал в мире, где инвертирование изображения сохраняет категорию.
И все же, несмотря на очевидную абсурдность линейности здесь, по сравнению с нашими предыдущими примерами, менее очевидно, что мы могли бы решить проблему с помощью простого исправления предварительной обработки. Это потому, что значение любого пикселя сложным образом зависит от его контекста (значений окружающих пикселей). Несмотря на то, что может существовать представление наших данных, которое учитывало бы соответствующие взаимодействия между нашими функциями, на вершине которого была бы подходящей линейная модель, мы просто не знаем, как рассчитать его вручную. В глубоких нейронных сетях мы использовали данные наблюдений для совместного изучения представления через скрытые слои и линейного предиктора, который действует на это представление.
5.1.1.2. Включение скрытых слоев
Мы можем преодолеть эти ограничения линейных моделей и обработать более общий класс функций, включив один или несколько скрытых слоев. Самый простой способ сделать это - сложить много полностью связанных слоев друг на друга. Каждый слой поступает в слой над ним, пока мы не сгенерируем выходные данные. Мы можем думать о первых слоях L − 1 как о нашем представлении, а о последнем уровне как о нашем линейном предсказателе. Эту архитектуру обычно называют многослойным персептроном, часто сокращенно MLP.
Ниже мы изобразим МЛП схематично (рис. 5.1.1). (См. рисунок в книге)
Этот MLP имеет 4 входа, 3 выхода, а его скрытый слой содержит 5 скрытых единиц. Так как входной уровень не включает никаких вычислений, создание выходных данных с помощью этой сети требует выполнения вычислений как для скрытого, так и для выходного уровня; таким образом, количество слоев в этом MLP равно 2.
Обратите внимание, что оба эти слоя полностью связаны. Каждый вход влияет на каждый нейрон в скрытом слое, а каждый из них, в свою очередь, влияет на каждый нейрон в выходном слое.
5.1.1.3. От линейного к нелинейному
Как и раньше, матрицей X ∈ Rn × d мы обозначаем мини-серию из n примеров, где каждый пример имеет d входов (признаков). Для MLP с одним скрытым слоем, скрытый слой которого имеет h скрытых единиц, обозначим через H ∈ Rn × h выходы скрытого слоя, которые являются скрытыми представлениями. В математике или коде H также известен как переменная скрытого уровня или скрытая переменная. Поскольку скрытый и выходной слои полностью связаны, у нас есть веса скрытого слоя W(1) ∈ Rd × h и смещения b(1) ∈ R1 × h, а веса выходного слоя W(2) ∈ Rh × q и смещения b(2) ∈ R1 × q. Формально вычисляем выходы O ∈ Rn × q MLP с одним скрытым слоем следующим образом:
H = XW(1) + b(1)
          O = HW(2) + b(2)                                                                                                      (5.1.1)

Обратите внимание, что после добавления скрытого слоя наша модель теперь требует от нас отслеживания и обновления дополнительных наборов параметров. Итак, что мы получили взамен? Вы можете быть удивлены, узнав, что в модели, определенной выше, мы ничего не получаем за свои проблемы! Причина проста. Скрытые единицы выше задаются аффинной функцией входов, а выходы (pre-softmax) являются просто аффинной функцией скрытых единиц. Аффинная функция аффинной функции сама является аффинной функцией.
Более того, наша линейная модель уже могла представить любую аффинную функцию.
Мы можем увидеть эквивалентность формально, доказав, что для любых значений весов мы можем просто свернуть скрытый слой, получив эквивалентную однослойную модель с параметрами W =W(1) W(2) и b = b(1) W(2) + b(2):
O = (XW(1) + b(1)) W(2) + b(2) = XW(1) W(2) + b(1) W (2) + b(2) = XW + b.         (5.1.2)
Чтобы реализовать потенциал многоуровневых архитектур, нам нужен еще один ключевой ингредиент: нелинейная функция активации σ, применяемая к каждой скрытой единице после аффинного преобразования. Выходы функций активации (например, σ (·)) называются активациями. В общем, с функциями активации больше невозможно свернуть наш MLP в линейную модель:
H = σ (XW(1) + b(1)),
O = HW(2) + b(2)                                                                                                 (5.1.3)
Поскольку каждая строка в X соответствует примеру в мини-пакете, с некоторым злоупотреблением обозначениями, мы определяем нелинейность σ, применяемую к ее входам построчно, то есть по одному примеру за раз. Обратите внимание, что мы использовали обозначение softmax таким же образом для обозначения построчной операции в разделе 3.4.4. Часто, как в этом разделе, функции активации, которые мы применяем к скрытым слоям, являются не просто построчными, а поэлементными. Это означает, что после вычисления линейной части слоя мы можем рассчитать каждую активацию, не глядя на значения, принимаемые другими скрытыми модулями. Это верно для большинства функций активации.
Чтобы построить более общие MLP, мы можем продолжить складывать такие скрытые слои, например, H(1) = σ1 (XW(1) + b(1)) и H(2) = σ2(H(1) W(2) + b(2)), одна над другой, создавая все более выразительные модели.
5.1.1.4. Универсальные аппроксиматоры
MLP могут фиксировать сложные взаимодействия между нашими входами через свои скрытые нейроны, которые зависят от значений каждого из входов. Мы можем легко спроектировать скрытые узлы для выполнения произвольных вычислений, например, базовых логических операций над парой входов. Более того, для некоторых вариантов выбора функции активации широко известно, что MLP являются универсальными аппроксиматорами. Даже в сети с одним скрытым слоем, при наличии достаточного количества узлов (возможно, абсурдно большого) и правильного набора весов мы можем моделировать любую функцию, хотя на самом деле изучение этой функции является сложной частью. Вы можете думать о своей нейронной сети как о языке программирования C. Этот язык, как и любой другой современный язык, способен выражать любую вычислимую программу. Но на самом деле создать программу, отвечающую вашим требованиям, - это сложная часть.
Более того, тот факт, что сеть с одним скрытым слоем может изучить любую функцию, не означает, что вы должны пытаться решить все свои проблемы с помощью сетей с одним скрытым слоем. Фактически, мы можем аппроксимировать многие функции гораздо более компактно, используя более глубокие (а не более широкие) сети. В следующих главах мы коснемся более строгих аргументов.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import autograd, np, npx
npx.set_np()

5.1.2. Функции активации
Функции активации решают, должен ли нейрон активироваться или нет, вычисляя взвешенную сумму и добавляя к ней смещение. Это дифференцируемые операторы для преобразования входных сигналов в выходные, в то время как большинство из них добавляют нелинейности. Поскольку функции активации имеют фундаментальное значение для глубокого обучения, давайте кратко рассмотрим некоторые общие действия.
5.1.2.1.  Функция ReLU
Наиболее популярным выбором из-за простоты реализации и его хорошей производительности для множества задач прогнозирования является выпрямленный линейный блок (ReLU). ReLU обеспечивает очень простой нелинейное преобразование. Для элемента x функция определяется как максимум этого элемента и 0:
ReLU(x) = max(x, 0).                                                                                           (5.1.4)
Неформально функция ReLU сохраняет только положительные элементы и отбрасывает все отрицательные элементы, устанавливая соответствующие активации на 0. Чтобы получить некоторую интуицию, мы можем построить график функции. Как видите, функция активации кусочно-линейная.
x = np.arange (-8.0, 8.0, 0.1)
x.attach_grad ()
с autograd.record ():
у = npx.relu (х)
d2l.plot (x, y, 'x', 'relu (x)', figsize = (5, 2.5))

Когда вход отрицательный, производная функции ReLU равна 0, а когда вход положительный, производная функции ReLU равна 1. Обратите внимание, что функция ReLU не дифференцируема, когда вход принимает значение, точно равное 0. В этих случаях мы по умолчанию используем левую производную и говорим, что производная равна 0, когда вход равен 0. Мы можем избежать этого, потому что входные данные могут никогда не быть нулевыми. Есть старая пословица, что, если тонкие граничные условия имеют значение, мы, вероятно, занимаемся (настоящей) математикой, а не разработкой. Здесь применима эта общепринятая мудрость. Мы строим производную функции ReLU, показанную ниже.
y.backward ()
d2l.plot (x, x.grad, 'x', 'grad of relu', figsize = (5, 2.5))

Причина использования ReLU в том, что его производные ведут себя особенно хорошо: они либо исчезают, либо просто пропускают аргумент. Это улучшает поведение оптимизации и смягчает хорошо задокументированную проблему исчезновения градиентов, которая преследовала предыдущие версии нейронных сетей (подробнее об этом позже).
Обратите внимание, что существует множество вариантов функции ReLU, включая параметризованную функцию ReLU (pReLU) (He et al., 2015). Этот вариант добавляет линейный член к ReLU, поэтому некоторая информация все равно передается, даже если аргумент отрицательный:
pReLU (x) = max (0, x) + α min (0, x).                                                           (5.1.5)
5.1.2.2. Сигмоидальная функция
Сигмоидальная функция преобразует свои входы, значения которых лежат в области R, в выходы, лежащие в интервале (0, 1). По этой причине сигмоид часто называют функцией сжатия: он сжимает любой ввод в диапазоне (-inf, inf) до некоторого значения в диапазоне (0, 1):
sigmoid(x) = 1/1 + exp(−x).                                                                             (5.1.6)

В самых ранних нейронных сетях ученые интересовались моделированием биологических нейронов, которые либо срабатывают, либо не срабатывают. Таким образом, пионеры в этой области, начиная с Маккаллоха и Питтса, изобретателей искусственного нейрона, сосредоточились на пороговых единицах. Активация порога принимает значение 0, когда его входной сигнал ниже некоторого порога, и значение 1, когда входное значение превышает пороговое значение.
Когда внимание переключилось на обучение на основе градиента, сигмовидная функция была естественным выбором, потому что это плавное дифференцируемое приближение к пороговой единице. Сигмоиды по-прежнему широко используются в качестве функций активации на выходных модулях, когда мы хотим интерпретировать выходы как вероятности для задач двоичной классификации (вы можете рассматривать сигмоид как частный случай softmax). Однако сигмоид в основном был заменен более простым и легко обучаемым ReLU для большинства случаев использования в скрытых слоях. В следующих главах, посвященных рекуррентным нейронным сетям, мы опишем архитектуры, которые используют сигмоидальные блоки для управления потоком информации во времени.
Ниже мы построим сигмовидную функцию. Обратите внимание, что, когда вход близок к 0, сигмовидная функция приближается к линейному преобразованию.
with autograd.record():
y = npx.sigmoid(x)
d2l.plot(x, y, 'x', 'sigmoid(x)', figsize=(5, 2.5))

Производная сигмовидной функции определяется следующим уравнением:
d/dx sigmoid(x) = exp(−x)/(1 + exp(−x))2
= sigmoid(x) (1 − sigmoid(x)).                                                                               (5.1.7)

Производная сигмовидной функции представлена ​​ниже. Обратите внимание, что, когда вход равен 0, производная сигмовидной функции достигает максимума 0,25. Поскольку входные данные отклоняются от 0 в любом направлении, производная приближается к 0.
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))

5.1.2.3. Функция гиперболического тангенса
Как и сигмоидальная функция, функция tanh (гиперболический тангенс) также сжимает свои входные данные, преобразовывая их в элементы в интервале от -1 до 1:
tanh (x) = 1 - ехр (−2x)/(1 + ехр (−2x)),                                                             (5.1.8)
Ниже мы строим график функции tanh. Обратите внимание, что, когда вход приближается к 0, функция tanh приближается к линейному преобразованию. Хотя форма функции аналогична форме сигмовидной функции, функция tanh демонстрирует точечную симметрию относительно начала системы координат.
with autograd.record():
y = np.tanh(x)
d2l.plot(x, y, 'x', 'tanh(x)', figsize=(5, 2.5))

Производная функции tanh:

d/dx tanh(x) = 1 − tanh2(x).                                                                                (5.1.9)

Производная функции tanh показана ниже. Когда вход приближается к 0, производная функции tanh приближается к максимуму 1. И, как мы видели с сигмоидной функцией, когда вход перемещается от 0 в любом направлении, производная функции tanh приближается к 0.
y.backward ()
d2l.plot (x, x.grad, 'x', 'grad of tanh', figsize = (5, 2.5))

Таким образом, теперь мы знаем, как использовать нелинейности для создания выразительных архитектур многослойных нейронных сетей. В качестве примечания: ваши знания уже позволяют вам управлять набором инструментов, аналогичным практике 1990-х годов. В некотором смысле у вас есть преимущество перед любым, кто работал в 1990-х годах, потому что вы можете использовать мощные фреймворки глубокого обучения с открытым исходным кодом для быстрого создания модели, используя всего несколько строк кода. Раньше для обучения этих сетей исследователям требовалось кодировать тысячи строк на языках C и Fortran.


Резюме
· MLP добавляет один или несколько полностью связанных скрытых слоев между выходным и входным слоями и преобразует выход скрытого слоя с помощью функции активации.
· Обычно используемые функции активации включают функцию ReLU, сигмовидную функцию и функцию tanh.
Упражнения
1. Вычислите производную функции активации pReLU.
2. Покажите, что MLP, использующий только ReLU (или pReLU), создает непрерывную кусочно-линейную функцию.
3. Покажите, что tanh(x) + 1 = 2 sigmoid(2x).
4. Предположим, что у нас есть нелинейность, которая применяется к одной мини-партии за раз. Какие проблемы вы ожидаете от этого?
Обсуждение (см. https://discuss.d2l.ai/t/90)
5.2. Реализация многослойных персептронов с нуля
Теперь, когда мы математически охарактеризовали многослойные персептроны (MLP), давайте попробуем реализовать один из них самостоятельно. Для сравнения с нашими предыдущими результатами, достигнутыми с помощью регрессии softmax (Раздел 3.6), мы продолжим работу с набором данных классификации изображений Fashion-MNIST (Раздел 3.5).
from d2l import mxnet as d2l
from mxnet import gluon, np, npx
npx.set_np()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

5.2.1. Инициализация параметров модели
Напомним, что Fashion-MNIST содержит 10 классов, и что каждое изображение состоит из сетки 28 × 28 = 784 значений пикселей в градациях серого. Опять же, мы пока не будем обращать внимание на пространственную структуру между пикселями, поэтому мы можем думать об этом как о простом наборе данных классификации с 784 входными функциями и 10 классами. Для начала мы реализуем MLP с одним скрытым слоем и 256 скрытыми модулями. Обратите внимание, что мы можем рассматривать обе эти величины как гиперпараметры. Обычно мы выбираем ширину слоя в степени 2, что, как правило, является вычислительно эффективным из-за того, как память распределяется и адресуется в оборудовании.
Опять же, мы представим наши параметры несколькими тензорами. Обратите внимание, что для каждого слоя мы должны отслеживать одну матрицу весов и один вектор смещения. Как всегда, мы выделяем память для градиентов потерь по этим параметрам.
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens))
b1 = np.zeros(num_hiddens)
W2 = np.random.normal(scale=0.01, size=(num_hiddens, num_outputs))
b2 = np.zeros(num_outputs)
params = [W1, b1, W2, b2]
for param in params:
param.attach_grad() 

5.2.2. Функция активации
Чтобы убедиться, что мы знаем, как все работает, мы сами реализуем активацию ReLU, используя максимальную функцию, а не напрямую вызывая встроенную функцию relu.
def relu(X):
return np.maximum(X, 0)

5.2.3. Модель
Поскольку мы не принимаем во внимание пространственную структуру, мы преобразуем каждое двумерное изображение в плоский вектор длиной num_inputs. Наконец, мы реализуем нашу модель всего несколькими строками кода.
def net(X):
X = X.reshape((-1, num_inputs))
H = relu(np.dot(X, W1) + b1)
return np.dot(H, W2) + b2

5.2.4. Функция потерь
Для обеспечения числовой стабильности и поскольку мы уже реализовали функцию softmax с нуля (раздел 3.6), мы используем интегрированную функцию из высокоуровневых API для расчета softmax и кросс-энтропийных потерь. Вспомните, как мы ранее обсуждали эти сложности в Разделе 3.7.2.
Мы рекомендуем заинтересованному читателю изучить исходный код функции потерь, чтобы углубить свои знания деталей реализации.
loss = gluon.loss.SoftmaxCrossEntropyLoss ()
5.2.5. Обучение
К счастью, цикл обучения MLP точно такой же, как и для регрессии softmax. Снова используя пакет d2l, мы вызываем функцию train_ch3 (см. Раздел 3.6), устанавливая количество эпох на 10 и скорость обучения на 0,5.
num_epochs, lr = 10, 0.1
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs,
lambda batch_size: d2l.sgd(params, lr, batch_size))

Чтобы оценить изученную модель, мы применим ее к некоторым тестовым данным.
d2l.predict_ch3(net, test_iter)

Резюме
· Мы увидели, что реализовать простой MLP легко, даже если это делается вручную.
· Однако при большом количестве уровней реализация MLP с нуля все еще может стать беспорядочной (например, присвоение имен и отслеживание параметров нашей модели).
Упражнения
1. Измените значение гиперпараметра num_hiddens и посмотрите, как этот гиперпараметр влияет на ваши результаты. Определите наилучшее значение этого гиперпараметра, сохраняя все остальные постоянными.
2. Попробуйте добавить дополнительный скрытый слой, чтобы увидеть, как он повлияет на результаты.
3. Как изменение скорости обучения влияет на ваши результаты? Исправляя архитектуру модели и другие гиперпараметры (включая количество эпох), какая скорость обучения дает вам наилучшие результаты?
4. Каков наилучший результат, который вы можете получить, оптимизируя вместе все гиперпараметры (скорость обучения, количество эпох, количество скрытых слоев, количество скрытых единиц на слой)?
5. Опишите, почему гораздо сложнее иметь дело с несколькими гиперпараметрами.
6. Какую стратегию можно придумать для структурирования поиска по нескольким гиперпараметрам?
Обсуждение (см. https://discuss.d2l.ai/t/92)
5.3. Краткая реализация многослойных персептронов
Как и следовало ожидать, полагаясь на высокоуровневые API, мы можем реализовать MLP еще более кратко.
implement MLPs even more concisely.
from d2l import mxnet as d2l
from mxnet import gluon, init, npx
from mxnet.gluon import nn
npx.set_np()

5.3.1. Модель
По сравнению с нашей краткой реализацией регрессии softmax (раздел 3.7) реализация на этот раз будет состоять в единственном отличии в том, что мы добавляем два полносвязных слоя (ранее мы добавляли один). Первый - это наш скрытый слой, который содержит 256 скрытых единиц и применяет функцию активации ReLU.
Второй - наш выходной слой.
net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'),
nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

Цикл обучения точно такой же, как когда мы реализовали регрессию softmax. Эта модульность позволяет нам отделить вопросы, касающиеся архитектуры модели, от ортогональных соображений.
batch_size, lr, num_epochs = 256, 0.1, 10
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
Резюме
· Используя высокоуровневые API-интерфейсы, мы можем гораздо более кратко реализовать MLP.
· Для той же проблемы классификации реализация MLP такая же, как и регрессия softmax, за исключением дополнительных скрытых слоев с функциями активации.
Упражнения
1. Попробуйте добавить разное количество скрытых слоев (вы также можете изменить скорость обучения). Какая настройка работает лучше всего?
2. Попробуйте разные функции активации. Какой из них лучше всего работает?
3. Попробуйте разные схемы инициализации весов. Какой метод работает лучше всего?
Обсуждение (см. https://discuss.d2l.ai/t/94)
5.4. Модели выбора, недообучения и переобучения
Наша цель как ученых в области машинного обучения - обнаруживать закономерности. Но как мы можем быть уверены, что действительно обнаружили общую закономерность, а не просто запомнили наши данные? Например, представьте, что мы хотели найти закономерности среди генетических маркеров, связывающих пациентов с их статусом деменции, где ярлыки взяты из набора (деменция - легкое когнитивное нарушение здоровья).
Поскольку гены каждого человека идентифицируют их однозначно (игнорируя идентичных братьев и сестер), можно запомнить весь набор данных.
Мы не хотим, чтобы наша модель говорила: «Это Боб! Я помню его! У него слабоумие!» Причина проста. Когда мы развернем модель в будущем, мы встретим пациентов, которых модель никогда раньше не видела. Наши прогнозы будут полезны только в том случае, если наша модель действительно обнаружит общую закономерность.
Если резюмировать более формально, наша цель - выявить закономерности, отражающие закономерности в основной популяции, из которой был взят наш обучающий набор. Если мы добьемся успеха в этом начинании, то сможем успешно оценить риск даже для людей, с которыми мы никогда раньше не сталкивались.
Эта проблема - как обнаруживать обобщающие закономерности - является фундаментальной проблемой машинного обучения.
Опасность заключается в том, что при обучении моделей мы получаем доступ только к небольшой выборке данных. Самые большие наборы данных общедоступных изображений содержат примерно один миллион изображений. Чаще мы должны учиться только на тысячах или десятках тысяч точек данных. В большой больничной системе мы можем получить доступ к сотням тысяч медицинских записей. При работе с конечными выборками мы рискуем обнаружить очевидные ассоциации, которые, как оказалось, не подтвердятся, когда мы соберем больше данных.
Явление более точной подгонки наших обучающих данных, чем мы подгоняем к основному распределению, называется переобучением, а методы, используемые для борьбы с переобучением, называются регуляризацией. В предыдущих разделах вы могли наблюдать этот эффект, экспериментируя с набором данных FashionMNIST. Если вы изменили структуру модели или гиперпараметры во время эксперимента, вы могли заметить, что с достаточным количеством нейронов, слоев и эпох обучения модель может в конечном итоге достичь идеальной точности на обучающем наборе, даже если точность тестовых данных ухудшается.
5.4.1. Ошибка обучения и ошибка обобщения
Чтобы обсудить это явление более формально, нам нужно различать ошибку обучения и ошибку обобщения. Ошибка обучения - это ошибка нашей модели, рассчитанная на обучающем наборе данных, в то время как ошибка обобщения - это ожидание ошибки нашей модели, если бы мы применили ее к бесконечному потоку дополнительных точек данных, взятых из того же базового распределения данных, что и наша исходная выборка.
Проблема в том, что мы никогда не сможем точно вычислить ошибку обобщения. Это потому, что поток бесконечных данных - это воображаемый объект. На практике мы должны оценить ошибку обобщения, применив нашу модель к независимому набору тестов, состоящему из случайного набора точек данных, которые не были включены в наш обучающий набор.
Следующие три мысленных эксперимента помогут лучше проиллюстрировать эту ситуацию. Представьте себе студентку колледжа, которая пытается подготовиться к выпускному экзамену. Прилежная ученица будет стремиться хорошо практиковаться и проверять свои способности на экзаменах за предыдущие годы. Тем не менее, хорошие результаты на прошлых экзаменах не гарантируют, что она преуспеет, когда это необходимо. Например, ученик может попытаться заучить наизусть ответы на вопросы экзамена. Это требует от ученика запоминания многих вещей. Возможно, она даже отлично помнит ответы на прошлых экзаменах. Другой ученик может подготовиться, пытаясь понять причины, по которым он дает определенные ответы. В большинстве случаев последний студент справится гораздо лучше.
Аналогичным образом рассмотрим модель, которая просто использует справочную таблицу для ответов на вопросы. Если набор допустимых входных данных дискретен и достаточно мал, то, возможно, после просмотра множества обучающих примеров этот подход будет хорошо работать. Тем не менее, эта модель не может работать лучше, чем случайное предположение, когда сталкивается с примерами, которых она никогда раньше не видела. На самом деле области ввода слишком велики, чтобы запомнить ответы, соответствующие каждому мыслимому вводу. Например, рассмотрим черно-белые изображения размером 28 × 28. Если каждый пиксель может принимать одно из 256 значений оттенков серого, то имеется 256784 возможных изображения. Это означает, что изображений с низким разрешением в градациях серого и миниатюрных изображений гораздо больше, чем атомов во Вселенной. Даже если бы мы могли столкнуться с такими данными, мы никогда не смогли бы позволить себе хранить таблицу поиска.
Наконец, рассмотрим проблему попытки классифицировать результаты подбрасывания монеты (класс 0: орел, класс 1: решка) на основе некоторых контекстных функций, которые могут быть доступны. Предположим, что монета симметричная.
Независимо от того, какой алгоритм мы придумаем, ошибка обобщения всегда будет 1/2. Однако для большинства алгоритмов мы должны ожидать, что наша ошибка обучения будет значительно ниже, в зависимости от удачи розыгрыша, даже если у нас не было никаких функций! Рассмотрим набор данных {0, 1, 1, 1, 0, 1}.
Наш безфункциональный алгоритм должен был бы всегда прибегать к прогнозированию класса большинства, который, как видно из нашей ограниченной выборки, равен 1. В этом случае модель, которая всегда прогнозирует класс 1, будет приводят к ошибке 1/3, что значительно лучше, чем ошибка нашего обобщения. По мере увеличения количества данных вероятность того, что доля орлов будет значительно отклоняться от 1/2, уменьшается, и наша ошибка обучения будет соответствовать ошибке обобщения.
Статистическая теория обучения
Поскольку обобщение является фундаментальной проблемой машинного обучения, вы, возможно, не удивитесь, узнав, что многие математики и теоретики посвятили свою жизнь разработке формальных теорий для описания этого явления. В своей одноименной теореме Гливенко и Кантелли вывели скорость, с которой ошибка обучения сходится к ошибке обобщения. В серии основополагающих статей Вапник и Червоненкис распространили эту теорию на более общие классы функций.
Эта работа заложила основы теории статистического обучения. В стандартной настройке контролируемого обучения, к которой мы обращались до сих пор и будем придерживаться на протяжении большей части этой книги, мы предполагаем, что как данные обучения, так и данные тестирования извлекаются независимо из идентичных распределений. Это обычно называется i.i.d. предположение, что означает, что процесс, который производит выборку наших данных, не имеет памяти. Другими словами, второй нарисованный и третий нарисованный пример коррелируют не больше, чем второй и двухмиллионный нарисованные образцы.
Чтобы быть хорошим специалистом по машинному обучению, нужно мыслить критически, и вы уже должны проделывать дыры в этом предположении, придумывая общие случаи, когда это предположение не выполняется. Что, если мы обучим предсказателя риска смертности на основе данных, собранных у пациентов в Медицинском центре UCSF, и применим его к пациентам в Массачусетской больнице общего профиля? Эти дистрибутивы просто не идентичны. Причем розыгрыши могут коррелировать по времени. Что, если мы классифицируем темы твитов?
Новостной цикл создаст временные зависимости в обсуждаемых темах, нарушая любые предположения о независимости.
Иногда мы можем избежать наказания за незначительные нарушения i.i.d. предположение, и наши модели будут продолжать работать замечательно. В конце концов, почти каждое реальное приложение имеет хотя бы небольшое нарушение i.i.d.-предположение, и тем не менее у нас есть много полезных инструментов для различных приложений, таких как распознавание лиц, распознавание речи и языковой перевод.
Другие нарушения обязательно доставят неприятности. Представьте, например, что мы пытаемся обучить систему распознавания лиц, обучая ее исключительно на студентах университетов, а затем хотим развернуть ее в качестве инструмента для мониторинга гериатрии в домах престарелых. Это вряд ли сработает, поскольку студенты колледжей обычно сильно отличаются от пожилых людей.
В последующих главах мы обсудим проблемы, возникающие в результате нарушения i.i.d.-предположения. На данный момент даже принимая i.i.d.-предположение как само собой разумеющееся, понимание обобщения - огромная проблема. Более того, выяснение точных теоретических основ, которые могли бы объяснить, почему глубокие нейронные сети так хорошо обобщаются, продолжает беспокоить величайшие умы теории обучения.
Когда мы обучаем наши модели, мы пытаемся найти функцию, которая наилучшим образом соответствует обучающим данным. Если функция настолько гибкая, что может улавливать ложные шаблоны так же легко, как и истинные ассоциации, то она может работать слишком хорошо без создания модели, которая хорошо обобщается на невидимые данные. Это именно то, чего мы хотим избежать или, по крайней мере, контролировать. Многие методы глубокого обучения являются эвристиками и приемами, направленными на защиту от переобучения.
Сложность модели
Когда у нас есть простые модели и много данных, мы ожидаем, что ошибка обобщения будет напоминать ошибку обучения. Когда мы работаем с более сложными моделями и меньшим количеством примеров, мы ожидаем, что ошибка обучения уменьшится, но разрыв в обобщении будет расти. Что именно составляет сложность модели - вопрос сложный. Многие факторы определяют, будет ли модель хорошо обобщаться. Например, модель с большим количеством параметров может считаться более сложной. Модель, параметры которой могут принимать более широкий диапазон значений, может быть более сложной. Часто с нейронными сетями мы думаем, что модель, которая требует большего количества итераций обучения, является более сложной, а модель, которая требует досрочного прекращения (меньшее количество итераций обучения), - менее сложной.
Может быть сложно сравнить сложность элементов существенно разных классов моделей (скажем, деревьев решений и нейронных сетей). На данный момент весьма полезно простое практическое правило:
Модель, которая может легко объяснить произвольные факты, - это то, что статистики считают сложной, тогда как модель, которая имеет лишь ограниченную выразительную силу, но все же может хорошо объяснить данные, вероятно, ближе к истине. 
В философии это тесно связано с критерием Поппера фальсифицируемости научной теории: теория хороша, если она соответствует данным и, если существуют конкретные тесты, которые можно использовать для ее опровержения. Это важно, поскольку все статистические оценки являются апостериорными, т. е. мы оцениваем после того, как наблюдаем факты, а значит, уязвимы для связанной с ними ошибками. А пока мы отложим философию и остановимся на более осязаемых вопросах.
В этом разделе, чтобы дать вам некоторую интуицию, мы сосредоточимся на нескольких факторах, которые имеют тенденцию влиять на обобщаемость класса модели:
1. Количество настраиваемых параметров. Когда количество настраиваемых параметров, иногда называемых степенями свободы, велико, модели, как правило, более подвержены переобучению.
2. Значения, принимаемые параметрами. Когда веса могут принимать более широкий диапазон значений, модели могут быть более подвержены переобучению.
3. Количество обучающих примеров. Тривиально легко переоснастить набор данных, содержащий только один или два примера, даже если ваша модель проста. Но для переобучения с набором данных в миллионы примеров требуется чрезвычайно гибкая модель.

5.4.2. Выбор модели
В машинном обучении мы обычно выбираем нашу окончательную модель после оценки нескольких моделей-кандидатов.
Этот процесс называется выбором модели. Иногда модели, подлежащие сравнению, принципиально отличаются по своей природе (например, деревья решений и линейные модели). В других случаях мы сравниваем члены одного и того же класса моделей, которые были обучены с разными настройками гиперпараметров.
С помощью MLP, например, мы можем сравнить модели с разным количеством скрытых слоев, разным количеством скрытых единиц и различными вариантами функций активации, применяемых к каждому скрытому слою. Чтобы определить лучшую из наших моделей-кандидатов, мы обычно используем набор данных проверки.
Набор данных проверки
В принципе, нам не следует трогать наш тестовый набор, пока мы не выберем все наши гиперпараметры.
Если мы будем использовать тестовые данные в процессе выбора модели, существует риск того, что мы можем переоценить тестовые данные. Тогда у нас были бы серьезные проблемы. Если мы переоснащаем наши тренировочные данные, всегда есть оценка тестовых данных, чтобы мы были честны. Но если мы перестроим тестовые данные, как мы узнаем?
Таким образом, мы никогда не должны полагаться на тестовые данные при выборе модели. И все же мы не можем полагаться только на обучающие данные для выбора модели, потому что мы не можем оценить ошибку обобщения на самих данных, которые мы используем для обучения модели.
В практических приложениях картина становится более мутной. Хотя в идеале мы должны касаться тестовых данных только один раз, чтобы оценить самую лучшую модель или сравнить небольшое количество моделей друг с другом, реальные тестовые данные редко отбрасываются после всего лишь одного использования. Мы редко можем позволить себе новый набор тестов для каждого раунда экспериментов.
Обычной практикой решения этой проблемы является разделение наших данных тремя способами, включая набор данных для проверки (или набор данных для проверки) в дополнение к обучающим и тестовым наборам данных. В результате получается неясная практика, когда границы между данными проверки и тестирования вызывают тревогу неоднозначно. Если явно не указано иное, в экспериментах в этом курсе мы действительно работаем с тем, что по праву следует называть обучающими данными и данными проверки, без настоящих наборов тестов. Следовательно, точность, указанная в каждом эксперименте курса, на самом деле является точностью проверки, а не истинной точностью набора тестов.
Перекрестная проверка K-Fold
Когда обучающих данных мало, мы можем даже не позволить себе хранить достаточно данных, чтобы составить надлежащий набор для проверки. Одним из популярных решений этой проблемы является использование K-кратной перекрестной проверки. Здесь исходные обучающие данные разбиты на K неперекрывающихся подмножеств. Затем обучение и проверка модели выполняются K раз, каждый раз обучаясь на K - 1 подмножествах и проверяя на другом подмножестве (одном, не использованном для тренировки в этом раунде). Наконец, ошибки обучения и проверки оцениваются путем усреднения результатов K экспериментов.
5.4.3. Недостаточное или переобучение?
Когда мы сравниваем ошибки обучения и проверки, мы хотим помнить о двух общих ситуациях. Во-первых, мы хотим следить за случаями, когда наша ошибка обучения и ошибка проверки являются существенными, но между ними есть небольшой разрыв. Если модель не может уменьшить ошибку обучения, это может означать, что наша модель слишком проста (т.е. недостаточно выразительна), чтобы уловить паттерн, который мы пытаемся смоделировать. Более того, поскольку разрыв в обобщении между нашими ошибками обучения и проверки невелик, у нас есть основания полагать, что мы могли бы обойтись более сложной моделью. Это явление известно как недостаточное оснащение.
С другой стороны, как мы обсуждали выше, мы хотим следить за случаями, когда наша ошибка обучения значительно ниже, чем наша ошибка проверки, что указывает на серьезное переоснащение. Учтите, что переоснащение - не всегда плохо. В частности, что касается глубокого обучения, хорошо известно, что лучшие прогнозные модели часто намного лучше работают с данными обучения, чем с данными удержания. В конечном счете, нас обычно больше заботит ошибка проверки, чем разрыв между ошибками обучения и проверки.
Превосходная или недостаточная подгонка может зависеть как от сложности нашей модели, так и от размера доступных наборов обучающих данных - две темы, которые мы обсуждаем ниже.
Сложность модели
Чтобы проиллюстрировать некоторую классическую интуицию о переобучении и сложности модели, мы приводим пример с использованием полиномов. Учитывая обучающие данные, состоящие из одного признака x и соответствующей вещественной метки y, мы пытаемся найти многочлен степени d
yˆ = Σdi = 0 xi wi                                                                             (5.4.1)
оценить метки y. Это просто задача линейной регрессии, где наши характеристики задаются степенями x, веса модели задаются wi, а смещение задается w0, поскольку x0 = 1 для всех x. Поскольку это всего лишь задача линейной регрессии, мы можем использовать квадрат ошибки в качестве функции потерь.
Полиномиальная функция более высокого порядка сложнее, чем полиномиальная функция более низкого порядка, поскольку полином более высокого порядка имеет больше параметров, а диапазон выбора модельной функции шире. Зафиксировав набор обучающих данных, полиномиальные функции более высокого порядка всегда должны достигать более низкой (в худшем случае, равной) ошибки обучения по сравнению с полиномами более низкой степени. Фактически, когда каждая точка данных имеет различное значение x, полиномиальная функция со степенью, равной числу точек данных, может идеально соответствовать обучающей выборке. Мы визуализируем взаимосвязь между степенью полинома и недостаточной подгонкой по сравнению с переобучением на рис. 5.4.1. (см. рисунок в книге)
Размер набора данных
Еще одно важное соображение, о котором следует помнить, - это размер набора данных. При исправлении нашей модели чем меньше выборок будет в обучающем наборе данных, тем с большей вероятностью (и более серьезной) мы столкнемся с переобучением. По мере увеличения количества обучающих данных ошибка обобщения обычно уменьшается.
Более того, в целом больше данных никогда не помешает. Для фиксированной задачи и распределения данных обычно существует взаимосвязь между сложностью модели и размером набора данных. Имея больше данных, мы могли бы с пользой попытаться подогнать под более сложную модель. При отсутствии достаточных данных более простые модели будет труднее превзойти. Для многих задач глубокое обучение превосходит линейные модели только при наличии многих тысяч обучающих примеров. Отчасти нынешний успех глубокого обучения объясняется нынешним обилием массивных наборов данных благодаря интернет-компаниям, дешевым хранилищам, подключенным устройствам и широкой цифровизации экономики.
5.4.4. Полиномиальная регрессия
Теперь мы можем исследовать эти концепции в интерактивном режиме, подгоняя полиномы к данным.
from d2l import mxnet as d2l
from mxnet import gluon, np, npx
from mxnet.gluon import nn
import math
npx.set_np()

Создание набора данных
Сначала нам нужны данные. Учитывая x, мы будем использовать следующий кубический полином для создания меток для обучающих и тестовых данных:
у = 5 + 1,2х - 3,4x2/2! + 5,6x3/3! + ϵ где ϵ ∼ N (0, 0.12).             (5.4.2)
Параметр шума ϵ подчиняется нормальному распределению со средним значением 0 и стандартным отклонением 0,1. Для оптимизации мы обычно хотим избегать очень больших значений градиентов или потерь. Вот почему функции масштабируются с xi к хi/i!. Это позволяет нам избежать очень больших значений для больших показателей i. Мы синтезируем по 100 выборкам для обучающей выборки и тестовой выборки.
max_degree = 20 # Maximum degree of the polynomial
n_train, n_test = 100, 100 # Training and test dataset sizes true_w = np.zeros(max_degree) 
# Allocate lots of empty space 
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6]) 
features = np.random.normal(size=(n_train + n_test, 1))
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))
for i in range(max_degree):
poly_features[:, i] /= math.gamma(i + 1) # `gamma(n)` = (n-1)!
# Shape of `labels`: (`n_train` + `n_test`,)
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)

Опять же, мономы, хранящиеся в poly_features, масштабируются гамма-функцией, где Γ (n) = (n - 1)!. Взгляните на первые 2 образца из сгенерированного набора данных. Значение 1 технически является характеристикой, а именно постоянной характеристикой, соответствующей смещению.
features[:2], poly_features[:2, :], labels[:2]
(array([[2.2122064],
[1.1630787]]),
array([[1.00000000e+00, 2.21220636e+00, 2.44692850e+00, 1.80437028e+00,
9.97909844e-01, 4.41516489e-01, 1.62787601e-01, 5.14456779e-02,
1.42260585e-02, 3.49677517e-03, 7.73558859e-04, 1.55570160e-04,
2.86794402e-05, 4.88037267e-06, 7.71170789e-07, 1.13732597e-07,
1.57249964e-08, 2.04629069e-09, 2.51489857e-10, 2.92814419e-11],
[1.00000000e+00, 1.16307867e+00, 6.76375985e-01, 2.62226164e-01,
7.62474164e-02, 1.77363474e-02, 3.43812793e-03, 5.71259065e-04,
8.30524004e-05, 1.07329415e-05, 1.24832559e-06, 1.31990987e-07,
1.27929916e-08, 1.14455811e-09, 9.50865081e-11, 7.37287228e-12,
5.35951925e-13, 3.66678970e-14, 2.36931378e-15, 1.45036750e-16]]),
array([9.629796, 5.51997 ]))

Обучение и тестирование модели
Давайте сначала реализуем функцию для оценки потерь для данного набора данных.
def evaluate_loss(net, data_iter, loss): #@save
"""Evaluate the loss of a model on the given dataset."""
metric = d2l.Accumulator(2) # Sum of losses, no. of examples
for X, y in data_iter:
l = loss(net(X), y)
metric.add(d2l.reduce_sum(l), l.size)
return metric[0] / metric[1]

Теперь определите обучающую функцию.
def train(train_features, test_features, train_labels, test_labels,
num_epochs=400):
loss = gluon.loss.L2Loss()
net = nn.Sequential()
# Отключаем смещение, поскольку мы уже учли его в полиноме
# функции
net.add(nn.Dense(1, use_bias=False))
net.initialize()
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels), batch_size)
test_iter = d2l.load_array((test_features, test_labels), batch_size,
is_train=False)
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': 0.01})
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
xlim=[1, num_epochs], ylim=[1e-3, 1e2],
legend=['train', 'test'])
for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:
animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
evaluate_loss(net, test_iter, loss)))
print('weight:', net[0].weight.data().asnumpy())

Аппроксимация полиномиальной функцией третьего порядка (нормальная)
Мы начнем с использования полиномиальной функции третьего порядка, которая имеет тот же порядок, что и функция генерации данных. Результаты показывают, что потери при обучении и тестировании этой модели могут быть эффективно сокращены. Параметры изученной модели также близки к истинным значениям w = [5, 1.2, −3.4, 5.6].
# Выберите первые четыре измерения, то есть 1, x, x ^ 2/2 !, x ^ 3/3! из
# полиномиальные особенности
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
labels[:n_train], labels[n_train:])
weight: [[ 4.998419 1.2171801 -3.3890183 5.6006956]]

Подгонка линейной функции (недостаточная подгонка)
Давайте еще раз посмотрим на аппроксимацию линейной функцией. После упадка ранних эпох становится трудным дальнейшее снижение потерь при обучении этой модели. После завершения последней итерации эпохи потери в обучении все еще высоки. При использовании для согласования нелинейных шаблонов (например, полиномиальной функции третьего порядка здесь) линейные модели подвержены недостаточной адаптации.
# Выберите первые два измерения, то есть 1, x, из полиномиальных функций
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
labels[:n_train], labels[n_train:])
weight: [[2.6286998 4.698787 ]]

Аппроксимация полиномиальной функцией высшего порядка (переобучение)
Теперь попробуем обучить модель, используя многочлен слишком высокой степени. Здесь недостаточно данных, чтобы узнать, что коэффициенты более высокой степени должны иметь значения, близкие к нулю. В результате наша чрезмерно сложная модель настолько восприимчива, что на нее влияет шум обучающих данных.
Хотя потери в обучении могут быть эффективно уменьшены, потери в тестах все же намного выше. Это показывает, что сложная модель перекрывает данные.
# Выберите все размеры из полиномиальных функций
train(poly_features[:n_train, :], poly_features[n_train:, :],
labels[:n_train], labels[n_train:], num_epochs=1500)
weight: [[ 4.9748263 1.342102 -3.316707 5.018786 -0.1572338 1.4567666
0.1706778 0.21786575 0.06556528 -0.01586925 0.00981885 -0.05114863
-0.02413981 -0.01499512 -0.04940709 0.06389925 -0.04761838 -0.04380166
-0.05188227 0.05655775]]

В следующих разделах мы продолжим обсуждение проблем переобучения и методов их решения, таких как снижение веса и отсев.
Резюме
· Поскольку ошибка обобщения не может быть оценена на основе ошибки обучения, простая минимизация ошибки обучения не обязательно будет означать уменьшение ошибки обобщения. В моделях машинного обучения необходимо соблюдать осторожность, чтобы не допустить переобучения, чтобы свести к минимуму ошибку обобщения.
· Набор проверки может использоваться для выбора модели при условии, что он не используется слишком широко.
· Недообучение означает, что модель не может уменьшить ошибку обучения. Когда ошибка обучения намного ниже, чем ошибка проверки, происходит переобучение.
· Мы должны выбрать подходящую сложную модель и избегать использования недостаточных обучающих выборок.
Упражнения
1. Можете ли вы точно решить задачу полиномиальной регрессии? Подсказка: используйте линейную алгебру.
2. Рассмотрим выбор модели для полиномов:
· Постройте график зависимости потери обучения от сложности модели (степени полинома). Что вы наблюдаете? Какая степень полинома вам нужна, чтобы снизить потери на обучение до 0?
· Постройте тестовые потери в этом случае.
· Создайте тот же график в зависимости от количества данных.
3. Что произойдет, если вы откажетесь от нормализации (1 / i!) Полиномиальных характеристик xi? Можно как-нибудь исправить это?
4. Можете ли вы когда-нибудь ожидать увидеть нулевую ошибку обобщения?
Обсуждение (см. https://discuss.d2l.ai/t/96)
5.5. Снижение веса
Теперь, когда мы охарактеризовали проблему переобучения, мы можем ввести некоторые стандартные методы регуляризации моделей. Напомним, что мы всегда можем уменьшить переобучение, выйдя на улицу и собрав больше данных для обучения. Это может быть дорогостоящим, отнимающим много времени или полностью неподвластным нам, что делает это невозможным в краткосрочной перспективе. На данный момент мы можем предположить, что у нас уже есть столько высококачественных данных, сколько позволяют наши ресурсы, и сосредоточиться на методах регуляризации.
Напомним, что в нашем примере полиномиальной регрессии (раздел 5.4) мы могли ограничить возможности нашей модели, просто настроив степень подобранного полинома. Действительно, ограничение числа функций - популярный метод уменьшения переобучения. Однако простое отбрасывание функций может оказаться слишком грубым инструментом для работы. Придерживаясь примера полиномиальной регрессии, подумайте, что может случиться с многомерными входными данными. Естественные расширения многочленов на многомерные данные называются одночленами, которые представляют собой просто произведения степеней переменных. Степень монома - это сумма степеней. Например, x21x2 и x3x25 оба являются одночленами степени 3.
Обратите внимание, что количество членов со степенью d быстро увеличивается с увеличением d. Для k переменных количество одночленов степени d (т. е. k многократных d) равно (k -1 + d| k -1). Даже небольшие изменения степени, скажем, от 2 до 3, резко увеличивают сложность нашей модели. Таким образом, нам часто требуется более детальный инструмент для регулировки сложности функций.
5.5.1. Нормы и снижение веса
Мы описали как норму L2, так и норму L1, которые являются частными случаями более общей нормы Lp в разделе 2.3.10. Снижение веса (обычно называемое L2-регуляризацией) может быть наиболее широко используемым методом регуляризации параметрических моделей машинного обучения. Этот метод основан на простой интуиции, что среди всех функций f функция f = 0 (присвоение значения 0 всем входам) в некотором смысле является самой простой, и что мы можем измерить сложность функции по ее расстоянию от нуля. Но как точно измерить расстояние между функцией и нулем? Нет однозначного правильного ответа. Фактически, целые разделы математики, включая разделы функционального анализа и теории банаховых пространств, посвящены ответу на этот вопрос.
Простая интерпретация может заключаться в измерении сложности линейной функции f (x) = w⊤x по некоторой норме ее весового вектора, например, ∥w∥2. Наиболее распространенный метод обеспечения небольшого вектора веса - это добавить его норму в качестве штрафного члена к задаче минимизации потерь. Таким образом, мы заменяем нашу первоначальную цель, минимизируя потерю предсказания на обучающих метках, новой целью, минимизируя сумму потерь предсказания и штрафного члена. Теперь, если наш вектор веса становится слишком большим, наш алгоритм обучения может сосредоточиться на минимизации нормы веса ∥w∥2 по сравнению с минимизацией ошибки обучения. Это именно то, что мы хотим. Чтобы проиллюстрировать это в коде, давайте вернемся к нашему предыдущему примеру из раздела 3.1 для линейной регрессии. Там нашу потерю дали
L (w, b) = 1/n Σni = 1 ½ (w⊤x(i) + b - y(i)) 2,                                    (5.5.1)
Напомним, что x (i) - это характеристики, y (i) - метки для всех точек данных i, а (w, b) - параметры веса и смещения соответственно. Чтобы снизить размер весового вектора, мы должны каким-то образом добавить ∥w∥2 к функции потерь, но как модель должна компенсировать стандартные потери для этого нового аддитивного штрафа? На практике мы характеризуем этот компромисс с помощью константы регуляризации λ, неотрицательного гиперпараметра, который мы подбираем с помощью данных проверки:
L (w, b) + λ/2 ∥w∥2.                                                                (5.5.2)
При λ = 0 мы восстанавливаем нашу исходную функцию потерь. При λ> 0 мы ограничиваем размер ∥w∥. Мы делим на 2 по соглашению: когда мы берем производную квадратичной функции, 2 и 1/2 сокращаются, гарантируя, что выражение для обновления выглядит красиво и просто. Проницательный читатель может задаться вопросом, почему мы работаем с квадратом нормы, а не со стандартной нормой (то есть с евклидовым расстоянием). Мы делаем это для удобства вычислений. Возводя в квадрат норму L2, мы удаляем квадратный корень, оставляя сумму квадратов каждого компонента вектора весов. Это упрощает вычисление производной штрафа: сумма производных равна производной суммы.
Более того, вы можете спросить, почему мы вообще работаем с нормой L2, а не, скажем, с нормой L1. Фактически, другие варианты верны и популярны в статистике. В то время как L2-регуляризованные линейные модели представляют собой классический алгоритм гребневой регрессии, L1-регуляризованная линейная регрессия является аналогичной фундаментальной моделью в статистике, которая широко известна как регрессия лассо.
Одна из причин для работы с нормой L2 заключается в том, что она накладывает чрезмерный штраф на большие компоненты вектора весов. Это смещает наш алгоритм обучения в сторону моделей, которые равномерно распределяют вес по большему количеству функций. На практике это может сделать их более устойчивыми к ошибке измерения одной переменной. В отличие от этого, штрафы L1 приводят к моделям, которые концентрируют веса на небольшом наборе функций, обнуляя другие веса. Это называется выбором функций, который может быть желательным по другим причинам.
Используя те же обозначения в (3.1.10), мини-пакетные обновления стохастического градиентного спуска для L2-регуляризованной регрессии следуют:
w ← (1 - ηλ) w – η/| B | Σi∈B x(i)(w⊤x(i) + b - y(i)),                     (5.5.3)
Как и раньше, мы обновляем w в зависимости от того, на сколько наша оценка отличается от наблюдения.
Однако мы также уменьшаем размер w до нуля. Вот почему метод иногда называют «спадом веса»: учитывая только штрафной член, наш алгоритм оптимизации уменьшает вес на каждом этапе обучения. В отличие от выбора функций, снижение веса предлагает нам непрерывный механизм.
В отличие от выбора функций, уменьшение веса предлагает нам непрерывный механизм для регулировки сложности функции. Меньшие значения λ соответствуют менее ограниченному w, тогда как большие значения λ ограничивают w более значительно.
Включаем ли мы соответствующий штраф за смещение b2, может варьироваться в зависимости от реализации и может варьироваться в зависимости от уровня нейронной сети. Часто мы не регулируем член смещения выходного слоя сети.
5.5.2. Высокомерная линейная регрессия
Мы можем проиллюстрировать преимущества снижения веса на простом синтетическом примере.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
npx.set_np()
Сначала мы генерируем некоторые данные, как и раньше
y = 0.05 +∑di=1 0.01xi + ϵ where ϵ ∼ N (0, 0.012).                     (5.5.4)
Мы выбираем, чтобы наша метка была линейной функцией наших входных данных, искаженной гауссовым шумом с нулевым средним и стандартным отклонением 0,01. Чтобы эффект переобучения был заметен, мы можем увеличить размерность нашей задачи до d = 200 и работать с небольшой обучающей выборкой, содержащей всего 20 примеров.
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = np.ones ((num_inputs, 1)) * 0,01, 0,05
train_data = d2l.synthetic_data (true_w, true_b, n_train)
train_iter = d2l.load_array (train_data, batch_size)
test_data = d2l.synthetic_data (true_w, true_b, n_test)
test_iter = d2l.load_array (test_data, batch_size, is_train = False)

5.5.3. Реализация с нуля
Далее мы реализуем снижение веса с нуля, просто добавив возведенный в квадрат штраф L2 к исходной целевой функции.
Инициализация параметров модели
Сначала мы определим функцию для случайной инициализации параметров нашей модели.
def init_params():
w = np.random.normal(scale=1, size=(num_inputs, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
return [w, b]

Определение штрафа L2 Norm
Возможно, самый удобный способ применить это наказание - это уравновесить все термины и резюмируйте их.
def l2_penalty(w):
return (w**2).sum() / 2

Определение цикла обучения
Следующий код соответствует модели на обучающем наборе и оценивает ее на тестовом наборе. Линейная сеть и квадрат потерь не изменились со времени главы 3, поэтому мы просто импортируем их через d2l.linreg и d2l.squared_loss. Единственное изменение - теперь в наш проигрыш входит штраф.
def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
с autograd.record ():
# Добавлен срок штрафа по норме L2, и
# делает l2_penalty (w) `вектором, длина которого равна` 
batch_size`l = loss(net(X), y) + lambd * l2_penalty(w)
l.backward()
d2l.sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
d2l.evaluate_loss(net, test_iter, loss)))
print('L2 norm of w:', np.linalg.norm(w))

Обучение без регуляризации
Теперь мы запускаем этот код с lambd = 0, отключая снижение веса. Обратите внимание на то, что мы плохо переобучаем, уменьшая ошибку обучения, но не ошибку теста - случай переобучения текстового кода.
train(lambd=0)
L2 norm of w: 13.259391

Использование снижения веса
Ниже мы бежим со значительным снижением веса. Обратите внимание, что ошибка обучения увеличивается, но ошибка теста уменьшается. Это именно тот эффект, который мы ожидаем от регуляризации.
train(lambd=3)
L2 norm of w: 0.382491

Использование снижения веса
Ниже мы бежим со значительным снижением веса. Обратите внимание, что ошибка обучения увеличивается, но ошибка теста уменьшается. Это именно тот эффект, который мы ожидаем от регуляризации.
train(lambd=3)
L2 norm of w: 0.382491

5.5.4. Краткая реализация
Поскольку уменьшение веса повсеместно используется при оптимизации нейронных сетей, среда глубокого обучения делает его особенно удобным, интегрируя уменьшение веса в сам алгоритм оптимизации для удобного использования в сочетании с любой функцией потерь. Более того, такая интеграция дает вычислительные преимущества, позволяя уловкам реализации добавлять в алгоритм уменьшение веса без каких-либо дополнительных вычислительных затрат. Поскольку часть обновления, связанная с уменьшением веса, зависит только от текущего значения каждого параметра, оптимизатор в любом случае должен коснуться каждого параметра один раз.
В следующем коде мы указываем гиперпараметр уменьшения веса напрямую через wd при создании экземпляра нашего Trainer. По умолчанию, Gluon уменьшает и веса, и смещения одновременно. Обратите внимание, что гиперпараметр wd будет умножен на wd_mult при обновлении параметров модели. Таким образом, если мы установим wd_mult в ноль, параметр смещения b не будет уменьшаться.
def train_concise(wd):
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=1))
loss = gluon.loss.L2Loss()
num_epochs, lr = 100, 0.003
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': lr, 'wd': wd})
# The bias parameter has not decayed. Bias names generally end with "bias"
net.collect_params('.*bias').setattr('wd_mult', 0)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
d2l.evaluate_loss(net, test_iter, loss)))
print('L2 norm of w:', np.linalg.norm(net[0].weight.data()))

До сих пор мы коснулись только одного понятия о том, что составляет простую линейную функцию. Более того, что представляет собой простую нелинейную функцию, может быть еще более сложным вопросом. Например, воспроизведение гильбертова пространства ядра (RKHS) 70 позволяет применять инструменты, представленные для линейных функций в нелинейном контексте. К сожалению, алгоритмы на основе RKHS имеют тенденцию масштабироваться исключительно для больших данных высокой размерности. В этом курсе мы по умолчанию будем использовать простую эвристику применения убывания веса на всех уровнях глубокой сети.
Резюме
· Регуляризация - распространенный метод борьбы с переобучением. Он добавляет штрафной член к функции потерь на обучающем наборе, чтобы снизить сложность изученной модели.
· Одним из конкретных вариантов сохранения простоты модели является уменьшение веса с использованием штрафа L2. Это приводит к снижению веса на этапах обновления алгоритма обучения.
· Функциональность уменьшения веса предоставляется в оптимизаторах из фреймворков глубокого обучения.
· Различные наборы параметров могут иметь разное поведение обновления в пределах одного цикла обучения.
Упражнения
1. Поэкспериментируйте со значением λ в задаче оценки в этом разделе. Постройте график обучения и точности теста как функцию от λ. Что вы наблюдаете?
2. Используйте набор для проверки, чтобы найти оптимальное значение λ. Это действительно оптимальное значение? Это имеет значение?
3. Как бы выглядели уравнения обновления, если бы вместо ∥w∥2 мы использовали ∑i |w| как наше наказание выбора (регуляризация L1)?
4. Мы знаем, что ∥w∥2 = w⊤w. Можете ли вы найти аналогичное уравнение для матриц (см. норму Фробениуса в разделе 2.3.10)?
5. Просмотрите связь между ошибкой обучения и ошибкой обобщения. Помимо снижения веса, усиленных тренировок и использования модели подходящей сложности, какие еще способы вы можете придумать, чтобы справиться с переобучением?
6. В байесовской статистике мы используем произведение априорной вероятности и вероятности для получения апостериорной оценки посредством P (w | x) ∝ P (x | w) P (w). Как можно отождествить P (w) с регуляризацией?
Обсуждение (см. https://discuss.d2l.ai/t/98)
5.6. Отсев
В разделе 5.5 мы представили классический подход к регуляризации статистических моделей, налагая штрафы на L2 норму весов. С вероятностной точки зрения мы могли бы оправдать эту технику, утверждая, что мы исходили из априорного убеждения, что веса принимают значения из гауссовского распределения со средним нулевым. Более интуитивно мы могли бы возразить, что мы поощряли модель распределять ее веса между многими функциями, а не слишком сильно зависеть от небольшого числа потенциально ложных ассоциаций.
5.6.1. Возвращение к переоснащению
Столкнувшись с большим количеством функций, чем примеров, линейные модели имеют тенденцию переоснащаться. Но, учитывая больше примеров, чем функций, мы обычно можем рассчитывать на то, что линейные модели не переобучатся. К сожалению, надежность, с которой обобщаются линейные модели, имеет свою цену. Наивно применяемые линейные модели не учитывают взаимодействия между функциями. Для каждой особенности линейная модель должна назначать положительный или отрицательный вес, игнорируя контекст.
В традиционных текстах это фундаментальное противоречие между обобщаемостью и гибкостью описывается как компромисс между смещением и дисперсией. Линейные модели имеют большое смещение: они могут представлять только небольшой класс функций. Однако эти модели имеют низкую дисперсию: они дают аналогичные результаты для разных случайных выборок данных.
Глубокие нейронные сети населяют противоположный конец спектра отклонения-смещения. В отличие от линейных моделей, нейронные сети не ограничиваются рассмотрением каждой функции в отдельности. Они могут изучить взаимодействие между группами функций. Например, они могут сделать вывод, что слова «Нигерия» и «Western Union» вместе в электронном письме указывают на спам, но по отдельности - нет.
Даже когда у нас гораздо больше примеров, чем функций, глубокие нейронные сети способны переобучаться. В 2017 году группа исследователей продемонстрировала чрезвычайную гибкость нейронных сетей, обучив глубокие сети на случайно помеченных изображениях. Несмотря на отсутствие какого-либо истинного паттерна, связывающего входы с выходами, они обнаружили, что нейронная сеть, оптимизированная с помощью стохастического градиентного спуска, может идеально маркировать каждое изображение в обучающем наборе. Подумайте, что это значит. Если метки назначаются равномерно случайным образом и имеется 10 классов, то ни один классификатор не сможет добиться точности выше 10% для удерживаемых данных. Разрыв в обобщении здесь составляет колоссальные 90%. Если наши модели настолько выразительны, что могут плохо переобучаться, то, когда же нам ожидать, что они не переобучатся?
Математические основы загадочных обобщающих свойств глубоких сетей остаются открытыми вопросами исследования, и мы призываем теоретически ориентированного читателя углубиться в эту тему. А пока мы переходим к исследованию практических инструментов, которые имеют тенденцию эмпирически улучшить обобщение глубоких сетей.
5.6.2. Устойчивость к возмущениям
Давайте вкратце подумаем о том, чего мы ожидаем от хорошей прогнозной модели. Мы хотим, чтобы она работала с невидимыми данными. Классическая теория обобщения предполагает, что для сокращения разрыва между производительностью train и тестирования мы должны стремиться к простой модели. Простота может заключаться в небольшом количестве измерений. Мы исследовали это при обсуждении мономиальных базисных функций линейных моделей в разделе 5.4. Кроме того, как мы видели при обсуждении уменьшения веса (L2-регуляризация) в разделе 5.5, (обратная) норма параметров также представляет собой полезную меру простоты.
Еще одно полезное понятие простоты - это гладкость, то есть функция не должна быть чувствительной к небольшим изменениям ее входных данных. Например, когда мы классифицируем изображения, мы ожидаем, что добавление некоторого случайного шума к пикселям должно быть в основном безвредным.
В 1995 году Кристофер Бишоп формализовал эту идею, когда доказал, что обучение с входным шумом эквивалентно регуляризации Тихонова (Bishop, 1995). В этой работе была проведена четкая математическая связь между требованием, чтобы функция была гладкой (и, следовательно, простой), и требованием, чтобы она была устойчивой к возмущениям на входе.
Затем, в 2014 году, Шривастава и др. (Srivastava et al., 2014) разработали умную идею о том, как применить идею Бишопа и к внутренним уровням сети. А именно, они предложили вводить шум в каждый уровень сети перед вычислением следующего слоя во время обучения. Они поняли, что при обучении глубокой сети со многими уровнями введение шума обеспечивает плавность только на отображении ввода-вывода.
Их идея, называемая отсевом, включает в себя введение шума при вычислении каждого внутреннего слоя во время прямого распространения, и это стало стандартной техникой для обучения нейронных сетей. Метод называется dropout, потому что мы буквально выпадаем часть нейронов во время обучения. На протяжении всего обучения на каждой итерации стандартное исключение состоит из обнуления некоторой части узлов в каждом слое перед вычислением следующего слоя.
Чтобы быть ясным, мы навязываем собственное повествование со ссылкой на Бишопа. Оригинальная статья об отсеве из выборки предлагает интуицию через удивительную аналогию с половым воспроизводством. Авторы утверждают, что переобучение нейронной сети характеризуется состоянием, в котором каждый уровень полагается на определенный паттерн активаций на предыдущем уровне, называя это условие коадаптацией. Они утверждают, что отказ от учебы разрушает коадаптацию, так же как, как утверждают, половое размножение разрушает коадаптированные гены.
Таким образом, основная проблема заключается в том, как создать этот шум. Одна из идей состоит в том, чтобы вводить шум беспристрастным образом, чтобы ожидаемое значение каждого слоя - при фиксации других - равнялось значению, которое он принял бы в отсутствие шума.
В работе Бишопа он добавил гауссовский шум к входным данным линейной модели. На каждой итерации обучения он добавлял шум, выбранный из распределения со средним нулем ϵ ∼ N (0, σ2), на вход x, получая возмущенную точку x ′ = x + ϵ. В ожидании E [x'] = х.
При стандартной регуляризации выпадения каждый уровень сглаживается путем нормализации на долю узлов, которые были сохранены (не выпали). Другими словами, с вероятностью выпадения p каждая промежуточная активация h заменяется случайной величиной h ′ следующим образом:
h′ = { 0              with probability p
          h/1−p       в противном случае                                       (5.6.1)

По построению среднее остается неизменным, т.е., E[h′] = h.

5.6.3. Отсев на практике
Вспомните MLP со скрытым слоем и 5 скрытыми блоками на рис. 5.1.1. Когда мы применяем dropout к скрытому слою, обнуляя каждую скрытую единицу с вероятностью p, результат можно рассматривать как сеть, содержащую только подмножество исходных нейронов. На рис. 5.6.1 h2 и h5 удалены. (См. рисунок в книге.)
Следовательно, вычисление выходов больше не зависит от h2 или h5, и их соответствующий градиент также исчезает при выполнении обратного распространения. Таким образом, расчет выходного слоя не может чрезмерно зависеть от какого-либо одного элемента h1, …, h5.
Обычно мы отключаем отсев во время тестирования. Учитывая обученную модель и новый пример, мы не пропускаем никаких узлов и, следовательно, не нуждаемся в нормализации. Однако есть некоторые исключения: некоторые исследователи используют отсев во время тестирования в качестве эвристики для оценки неопределенности прогнозов нейронной сети: если прогнозы совпадают по многим различным маскам отсева, мы можем сказать, что сеть более уверенная.
5.6.4. Реализация с нуля
Чтобы реализовать функцию отсева для одного слоя, мы должны взять столько выборок из случайной величины Бернулли (бинарной), сколько наш слой имеет размеры, где случайная переменная принимает значение 1 (сохранить) с вероятностью 1 - p и 0 (отбрасывать) с вероятностью p. Один из простых способов реализовать это - сначала отобрать выборки из равномерного распределения U [0, 1]. Затем мы можем оставить те узлы, для которых соответствующая выборка больше p, а остальные отбросить.
В следующем коде мы реализуем функцию dropout_layer, которая удаляет элементы во входном тензоре X с выпадением вероятности, изменяя масштаб остатка, как описано выше:
survivors by 1.0-dropout.
from d2l import mxnet as d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
npx.set_np()
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
# In this case, all elements are dropped out
if dropout == 1:
return np.zeros_like(X)
# In this case, all elements are kept
if dropout == 0:
return X
mask = np.random.uniform(0, 1, X.shape) > dropout
return mask.astype(np.float32) * X / (1.0 - dropout)

Мы можем протестировать функцию dropout_layer на нескольких примерах. В следующих строках кода мы передаем наш ввод X через операцию выпадения с вероятностями 0, 0,5 и 1 соответственно.
X = np.arange(16).reshape(2, 8)
print(dropout_layer(X, 0))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1))
[[ 0. 1. 2. 3. 4. 5. 6. 7.]
[ 8. 9. 10. 11. 12. 13. 14. 15.]]
[[ 0. 2. 4. 6. 8. 10. 12. 14.]
[ 0. 18. 20. 0. 0. 0. 28. 0.]]
[[0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0.]]

Определение параметров модели
Опять же, мы работаем с набором данных Fashion-MNIST, представленным в разделе 3.5. Мы определяем MLP с двумя скрытыми слоями по 256 единиц каждый.
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens1))
b1 = np.zeros(num_hiddens1)
W2 = np.random.normal(scale=0.01, size=(num_hiddens1, num_hiddens2))
b2 = np.zeros(num_hiddens2)
W3 = np.random.normal(scale=0.01, size=(num_hiddens2, num_outputs))
b3 = np.zeros(num_outputs)
params = [W1, b1, W2, b2, W3, b3]
for param in params:
param.attach_grad()

Определение модели
В приведенной ниже модели применяется выпадение вывода для каждого скрытого слоя (после функции активации). Мы можем установить вероятность выпадения для каждого слоя отдельно. Распространенной тенденцией является установка более низкой вероятности отсева ближе к входному слою. Ниже мы установили 0,2 и 0,5 для первого и второго скрытых слоев соответственно. Мы гарантируем, что отсев будет активен только во время тренировки.
dropout1, dropout2 = 0.2, 0.5
def net(X):
X = X.reshape(-1, num_inputs)
H1 = npx.relu(np.dot(X, W1) + b1)
# Use dropout only when training the model
if autograd.is_training():
# Add a dropout layer after the first fully connected layer
H1 = dropout_layer(H1, dropout1)
H2 = npx.relu(np.dot(H1, W2) + b2)
if autograd.is_training():
# Add a dropout layer after the second fully connected layer
H2 = dropout_layer(H2, dropout2)
return np.dot(H2, W3) + b3

Обучение и тестирование
Это похоже на обучение и тестирование MLP, описанное ранее.
num_epochs, lr, batch_size = 10, 0.5, 256
loss = gluon.loss.SoftmaxCrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs,
lambda batch_size: d2l.sgd(params, lr, batch_size))

5.6.5. Краткая реализация
С высокоуровневыми API все, что нам нужно сделать, это добавить слой Dropout после каждого полностью подключенного уровня, передавая вероятность выпадения в качестве единственного аргумента его конструктору. Во время обучения слой Dropout будет случайным образом отбрасывать выходные данные предыдущего слоя (или, что то же самое, входные данные для последующего уровня) в соответствии с указанной вероятностью выпадения. Когда он не находится в режиме обучения, слой Dropout просто передает данные во время тестирования.
net = nn.Sequential()
net.add(nn.Dense(256, activation="relu"),
# Add a dropout layer after the first fully connected layer
nn.Dropout(dropout1),
nn.Dense(256, activation="relu"),
# Add a dropout layer after the second fully connected layer
nn.Dropout(dropout2),
nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))
Next, we train and test the model.
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

Резюме
· Помимо управления количеством измерений и размером вектора весов, выпадение - еще один инструмент, позволяющий избежать переобучения. Часто их применяют совместно.
· Dropout заменяет активацию h случайной величиной с ожидаемым значением h.
· Отсев используется только во время тренировки.

Упражнения
1. Что произойдет, если вы измените вероятности отсева для первого и второго слоев? В частности, что произойдет, если вы поменяете местами оба слоя? Разработайте эксперимент, чтобы ответить на эти вопросы, количественно опишите свои результаты и обобщите качественные выводы.
2. Увеличьте количество эпох и сравните результаты, полученные при использовании исключения, с результатами, полученными при его неиспользовании.
3. Какова разница активаций в каждом скрытом слое, когда выпадение применяется и не применяется? Нарисуйте график, чтобы показать, как эта величина изменяется с течением времени для обеих моделей.
4. Почему во время тестирования обычно не используется отсев из выборки?
5. Используя модель в этом разделе в качестве примера, сравните эффекты использования отсева и снижения веса. Что произойдет, если одновременно использовать отсев и снижение веса? Аддитивны ли результаты? Есть уменьшенная отдача (или хуже)? Они отменяют друг друга?
6. Что произойдет, если мы применим отсев к отдельным весам весовой матрицы, а не к активациям?
7. Придумайте другую технику введения случайного шума на каждом слое, которая отличается от стандартной техники отсева. Можете ли вы разработать метод, который превосходит метод исключения в наборе данных Fashion-MNIST (для фиксированной архитектуры)?
Обсуждение (см. https://discuss.d2l.ai/t/100)
5.7. Прямое распространение, обратное распространение и вычислительные графы
До сих пор мы обучили наши модели с помощью мини-пакетного стохастического градиентного спуска. Однако, когда мы реализовали алгоритм, мы беспокоились только о расчетах, связанных с прямым распространением через модель. Когда пришло время рассчитать градиенты, мы просто вызвали функцию обратного распространения, предоставляемую фреймворком глубокого обучения.
Автоматический расчет градиентов (автоматическое дифференцирование) значительно упрощает реализацию алгоритмов глубокого обучения. До автоматического дифференцирования даже небольшие изменения сложных моделей требовали ручного пересчета сложных производных. На удивление часто в научных статьях приходилось отводить множество страниц для разработки правил обновления. Хотя мы должны продолжать полагаться на автоматическую дифференциацию, чтобы сосредоточиться на интересных частях, вам следует знать, как эти градиенты рассчитываются под капотом, если вы хотите выйти за рамки поверхностного понимания глубокого обучения.
В этом разделе мы глубоко погрузимся в детали обратного распространения (чаще называемого обратным распространением). Чтобы дать некоторое представление о методах и их реализациях, мы используем базовую математику и вычислительные графы. Для начала мы сфокусируем наше изложение на MLP с одним скрытым слоем и уменьшением веса (регуляризация L2).
5.7.1. Прямое распространение
Прямое распространение (или прямой проход) относится к вычислению и хранению промежуточных переменных (включая выходные данные) для нейронной сети в порядке от входного уровня к выходному уровню. Теперь мы шаг за шагом проработаем механизм нейронной сети с одним скрытым слоем. Это может показаться утомительным, но, по вечным словам, фанка-виртуоза Джеймса Брауна, вы должны «заплатить цену, чтобы быть боссом».
Для простоты предположим, что входным примером является x ∈ Rd и что наш скрытый слой не включает член смещения. Здесь промежуточная переменная:
z = W (1) х,                                                                             (5.7.1)
где W (1) ∈ Rh× d - весовой параметр скрытого слоя. После запуска промежуточной переменной z ∈ Rh через функцию активации ϕ мы получаем наш скрытый вектор активации длины h,
h = ϕ (z).                                                                               (5.7.2)
Скрытая переменная h также является промежуточной переменной. Предполагая, что параметры выходного слоя имеют только вес W (2) ∈ Rq × h, мы можем получить переменную выходного слоя с вектором длины q:
o = W(2) h.                                                                         (5.7.3)
Предполагая, что функция потерь равна l, а метка примера - y, мы можем затем вычислить член потери для одного примера данных,
L = l (o, y).                                                                         (5.7.4)
Согласно определению L2-регуляризации, учитывая гиперпараметр λ, член регуляризации равен
s = λ/2 (∥W (1) ∥2F + ∥W (2) ∥2F),                                         (5.7.5)
где норма Фробениуса матрицы - это просто норма L2, применяемая после сглаживания матрицы в вектор. Наконец, регуляризованные потери модели на данном примере данных составляют:
J = L + s.                                                                              (5.7.6)
Мы называем J целевой функцией по следующим соображениям.
5.7.2. Вычислительный граф прямого распространения. 
Построение вычислительных графов помогает нам визуализировать зависимости операторов и переменных в рамках вычислений. Рис. 5.7.1 (см. рисунок в книге) содержит граф, связанный с простой сетью, описанной выше, где квадраты обозначают переменные, а кружки обозначают операторы. Левый нижний угол обозначает ввод, а правый верхний угол - вывод. Обратите внимание, что стрелки (которые показывают поток данных) в основном направлены вправо и вверх.
5.7.3. Обратное распространение
Обратное распространение относится к методу расчета градиента параметров нейронной сети.
Короче говоря, метод проходит по сети в обратном порядке, от выходного до входного уровня, в соответствии с правилом цепочки из правил исчисления производных действительных функций. Алгоритм сохраняет любые промежуточные переменные (частные производные), необходимые при вычислении градиента по некоторым параметрам. Предположим, что у нас есть функции Y = f (X) и Z = g (Y), в которых вход и выход X, Y, Z являются тензорами произвольной формы. Используя цепное правило, мы можем вычислить производную Z по X через
∂Z/∂X = prod (∂Z/∂Y, ∂Y/∂X).                                          (5.7.7)
Здесь мы используем оператор prod для умножения его аргументов после того, как были выполнены необходимые операции, такие как транспонирование и перестановка позиций ввода. Для векторов это просто: это просто умножение матрицы на матрицу. Для тензоров более высокой размерности мы используем соответствующий аналог. Оператор prod скрывает все накладные расходы на обозначения.
Напомним, что параметрами простой сети с одним скрытым слоем, расчетный граф которой представлен на рис. 5.7.1, являются W (1) и W (2). Цель обратного распространения ошибки - вычислить градиенты ∂J / ∂W (1) и ∂J / ∂W (2). Для этого мы применяем цепное правило и вычисляем, в свою очередь, градиент каждой промежуточной переменной и параметра. Порядок вычислений меняется на противоположный по сравнению с вычислениями, выполняемыми при прямом распространении, поскольку нам нужно начать с результата вычислительного графа и продвигаться к параметрам. Первым шагом является вычисление градиентов целевой функции J = L + s относительно члена потерь L и условия регуляризации.
∂J/∂L = 1 и ∂J/∂s = 1.                                                               (5.7.8)
Затем мы вычисляем градиент целевой функции относительно переменной выходного слоя o в соответствии с цепным правилом:
∂J/∂o = prod (∂J/∂L, ∂L/∂o) = ∂L/∂o ∈ Rq,                              (5.7.9)
Затем мы вычисляем градиенты члена регуляризации по обоим параметрам:
∂s/∂W (1) = λW (1) и ∂s/∂W (2) = λW (2),                                   (5.7.10)
Теперь мы можем вычислить градиент ∂J / ∂W (2) ∈ Rq × h параметров модели, ближайших к выходному слою. Использование цепного правила дает:
∂J/∂W (2) = prod (∂J/∂o, ∂o/∂W(2)) + prod (∂J/∂s, ∂s/∂W(2))
               = ∂J/∂o h⊤ + λW(2),                                                            (5.7.11)
Чтобы получить градиент относительно W(1), нам нужно продолжить обратное распространение вдоль выходного слоя к скрытому слою. Градиент относительно скрытого слоя s выводит ∂J / ∂h ∈ Rh определяется так
∂J/∂h = prod (∂J/∂o, ∂o/∂h) = W(2)⊤ ∂J/∂o,                           (5.7.12)
Поскольку функция активации ϕ применяется поэлементно, вычисление градиента ∂J / ∂z ∈ Rh промежуточной переменной z требует использования оператора поэлементного умножения, который мы обозначим через ⊙:
∂J/∂z = prod (∂J/∂h, ∂h/∂z) = ∂J/∂h ⊙ ϕ'(z).                         (5.7.13)
Наконец, мы можем получить градиент ∂J / ∂W(1) ∈ Rh × d параметров модели, ближайших к входному слою. Согласно цепному правилу получаем
∂J/∂W(1) = prod (∂J/∂z, ∂z/∂W (1)) + prod (∂J/∂s, ∂s/∂W (1))
                 = ∂J/∂z x⊤ + λW (1)                                                         (5.7.14)
5.7.4. Обучение нейронных сетей
При обучении нейронных сетей прямое и обратное распространение зависят друг от друга. В частности, для прямого распространения мы проходим вычислительный граф в направлении зависимостей и вычисляем все переменные на его пути. Затем они используются для обратного распространения, когда порядок вычислений на графике меняется на противоположный.
В качестве примера возьмем вышеупомянутую простую сеть. С одной стороны, вычисление члена регуляризации (5.7.5) во время прямого распространения зависит от текущих значений параметров модели W(1) и W(2). Они задаются алгоритмом оптимизации согласно обратному распространению в последней итерации. С другой стороны, вычисление градиента для параметра eq_backprop-J-h во время обратного распространения зависит от текущего значения скрытой переменной h, которое задается прямым распространением.
Поэтому при обучении нейронных сетей после инициализации параметров модели мы чередуем прямое распространение с обратным распространением, обновляя параметры модели с использованием градиентов, заданных обратным распространением. Обратите внимание, что при обратном распространении повторно используются сохраненные промежуточные значения прямого распространения, чтобы избежать дублирования вычислений. Одним из последствий является то, что нам нужно сохранить промежуточные значения до завершения обратного распространения ошибки. Это также одна из причин, почему тренировка требует значительно больше памяти, чем простое предсказание. Кроме того, размер таких промежуточных значений примерно пропорционален количеству сетевых уровней и размеру пакета.
Таким образом, обучение более глубоких сетей с использованием пакетов большего размера легче приводит к ошибкам нехватки памяти.
Резюме
· Прямое распространение последовательно вычисляет и сохраняет промежуточные переменные в пределах вычислительного графа, определенного нейронной сетью. Он переходит от входного к выходному слою.
· Обратное распространение последовательно вычисляет и сохраняет градиенты промежуточных переменных и параметров в нейронной сети в обратном порядке.
· При обучении моделей глубокого обучения прямое и обратное распространение взаимозависимы.
· Тренировка требует значительно больше памяти, чем предсказание.
Упражнения
1. Предположим, что входы X в некоторую скалярную функцию f являются матрицами размера n × m. Какова размерность градиента f по отношению к X?
2. Добавьте смещение к скрытому слою модели, описанной в этом разделе.
a. Нарисуйте соответствующий вычислительный граф.
b. Вывести уравнения прямого и обратного распространения.
2. Вычислите объем памяти для обучения и прогнозирования в модели, описанной в этом разделе.
3. Предположим, вы хотите вычислить вторые производные. Что происходит с вычислительным графом? Сколько времени, по вашему мнению, займет расчет?
4. Предположим, что вычислительный граф слишком велик для вашего графического процессора.
a. Можете ли вы разделить его на несколько графических процессоров?
b. Каковы преимущества и недостатки по сравнению с тренировкой на небольшой мини-партии?
Обсуждение (см. https://discuss.d2l.ai/t/102)
5.8. Числовая стабильность и инициализация
До сих пор каждая реализованная нами модель требовала, чтобы мы инициализировали ее параметры в соответствии с некоторым заранее заданным распределением. До сих пор мы считали схему инициализации само собой разумеющейся, не обращая внимания на детали того, как делается этот выбор. Возможно, у вас даже сложилось впечатление, что эти варианты не особенно важны. Напротив, выбор схемы инициализации играет важную роль в обучении нейронной сети и может иметь решающее значение для поддержания вычислительной устойчивости. Более того, этот выбор может быть интересным образом связан с выбором нелинейной функции активации. От того, какую функцию мы выбираем и как мы инициализируем параметры, зависит, насколько быстро сойдется наш алгоритм оптимизации. Неправильный выбор здесь может привести к тому, что во время тренировки мы столкнемся со взрывными или исчезающими градиентами. В этом разделе мы углубимся в эти темы более подробно и обсудим некоторые полезные эвристики, которые вы найдете полезными на протяжении всей вашей карьеры в области глубокого обучения.
5.8.1. Исчезающие и взрывающиеся градиенты
Рассмотрим глубокую сеть с L слоями, вход x и выход o. С каждым слоем l, определяемым преобразованием fl, параметризованным весами W(l), скрытая переменная которого равна h(l) (пусть h(0) = x), нашу сеть можно выразить как:
h(l) = fl (h(l − 1)) и, значит, o = fL ◦. . . ◦ f1 (x).                                       (5.8.1)
Если все скрытые переменные и входные данные являются векторами, мы можем записать градиент o относительно любого набора параметров W(l) следующим образом:
∂W(l) o = ∂h (L − 1) h(L)M (L)def = ·. . . · ∂h (l) h(l + 1)M (l + 1) def =∂W (l) h(l)v(l)def =,   (5.8.2)
Другими словами, этот градиент является произведением L − l матриц M (L)·. . . · M (l + 1) и вектор градиента v (l). Таким образом, мы подвержены тем же проблемам числового недолива, которые часто возникают при умножении слишком большого числа вероятностей. При работе с вероятностями распространенный трюк состоит в том, чтобы переключиться в лог-пространства, то есть сдвинуть давление с мантиссы на показатель степени числового представления. К сожалению, наша проблема более серьезна: изначально матрицы M (l) могут иметь большое разнообразие собственных значений. Они могут быть маленькими или большими, а их произведение может быть очень большим или очень маленьким.
Риски, связанные с нестабильными градиентами, выходят за рамки численного представления. Градиенты непредсказуемой величины также угрожают стабильности наших алгоритмов оптимизации. Мы можем столкнуться с обновлениями параметров, которые либо (i) слишком велики, что разрушает нашу модель (проблема взрывающегося градиента); либо (ii) чрезмерно малы (проблема исчезающего градиента), что делает обучение невозможным, поскольку параметры практически не меняются при каждом обновлении.
Исчезающие градиенты
Одна из частых причин, вызывающих проблему исчезающего градиента, - это выбор функции активации σ, которая добавляется после линейных операций каждого слоя. Исторически сложилось так, что сигмовидная функция 1 / (1 + exp (−x)) (введено в: numref: sec_mlp) была популярна, потому что она напоминает функцию пороговой обработки. Поскольку первые искусственные нейронные сети были вдохновлены биологическими нейронными сетями, идея о нейронах, которые активируются либо полностью, либо совсем не активизируются (например, биологические нейроны), казалась привлекательной. Давайте внимательнее посмотрим на сигмоид, чтобы понять, почему он может вызывать исчезающие градиенты.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import autograd, np, npx
npx.set_np()
x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():
y = npx.sigmoid(x)
y.backward()
d2l.plot(x, [y, x.grad], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))

Как видите, градиент сигмоиды исчезает как при больших, так и при малых входах. Более того, при обратном распространении через многие слои, если мы не находимся в зоне Златовласки, где входы для многих сигмоидов близки к нулю, градиенты всего продукта могут исчезнуть. Когда наша сеть может содержать много слоев, если мы не будем осторожны, градиент, вероятно, будет обрезан на каком-то слое. Действительно, раньше эта проблема мешала глубокому обучению сети.
Следовательно, ReLU, которые более стабильны (но менее правдоподобны), стали выбором по умолчанию для практикующих.
Взрывающиеся градиенты
Противоположная проблема, когда градиенты резко увеличиваются, может быть не менее неприятной. Чтобы проиллюстрировать это немного лучше, мы рисуем 100 гауссовских случайных матриц и умножаем их на некоторую исходную матрицу. Для выбранного масштаба (выбор дисперсии σ2 = 1) матричное произведение взрывается. Когда это происходит из-за инициализации глубокой сети, у нас нет шансов заставить оптимизатор градиентного спуска сойтись.
M = np.random.normal(size=(4, 4))
print('a single matrix', M)
for i in range(100):
M = np.dot(M, np.random.normal(size=(4, 4)))
print('after multiplying 100 matrices', M)
a single matrix [[ 2.2122064 1.1630787 0.7740038 0.4838046 ]
[ 1.0434405 0.29956347 1.1839255 0.15302546]
[ 1.8917114 -1.1688148 -1.2347414 1.5580711 ]
[-1.771029 -0.5459446 -0.45138445 -2.3556297 ]]
after multiplying 100 matrices 
[[ 3.4459714e+23 -7.8040680e+23 5.9973287e+23 4.5229990e+23]
[ 2.5275089e+23 -5.7240326e+23 4.3988473e+23 3.3174740e+23]
[ 1.3731286e+24 -3.1097155e+24 2.3897773e+24 1.8022959e+24]
[-4.4951040e+23 1.0180033e+24 -7.8232281e+23 -5.9000354e+23]]

Нарушение симметрии
Еще одна проблема при проектировании нейронных сетей - это симметрия, присущая их параметризации.
Предположим, что у нас есть простой MLP с одним скрытым слоем и двумя модулями. В этом случае мы могли бы переставить веса W(1) первого слоя и аналогичным образом переставить веса выходного слоя, чтобы получить ту же функцию. Нет ничего особенного в том, чтобы различать первый скрытый блок от второго скрытого блока. Другими словами, у нас есть симметрия перестановок среди скрытых единиц каждого слоя. Это больше, чем просто теоретическая неприятность. Рассмотрим вышеупомянутый MLP с одним скрытым слоем и двумя скрытыми блоками. Для иллюстрации предположим, что выходной слой преобразует два скрытых блока только в один выходной блок. Представьте, что произойдет, если мы инициализируем все параметры скрытого слоя как W (1) = c для некоторой константы c. В этом случае во время прямого распространения любой скрытый блок принимает те же входные данные и параметры, производя ту же активацию, которая подается на выходной блок. Во время обратного распространения ошибки дифференцирование выходного блока по параметрам W (1) дает градиент, все элементы которого принимают одно и то же значение. Таким образом, после итерации на основе градиента (например, стохастический градиентный спуск мини-пакета) все элементы W (1) по-прежнему принимают одинаковое значение. Такие итерации никогда не нарушат симметрию сами по себе, и мы, возможно, никогда не сможем понять выразительную силу сети. Скрытый слой будет вести себя так, как если бы он состоял только из одного элемента. Обратите внимание, что, хотя стохастический градиентный спуск мини-пакета не нарушит эту симметрию, регуляризация выпадения будет!
5.8.2. Инициализация параметров
Одним из способов решения - или, по крайней мере, смягчения - проблем, поднятых выше, является тщательная инициализация. Дополнительная осторожность во время оптимизации и подходящая регуляризация могут еще больше повысить стабильность.
Инициализация по умолчанию
В предыдущих разделах, например, в разделе 3.3, мы использовали нормальное распределение для инициализации значений наших весов. Если мы не укажем метод инициализации, фреймворк будет использовать метод случайной инициализации по умолчанию, который часто хорошо работает на практике для задач среднего размера.
Ксавье инициализация
Давайте посмотрим на распределение масштаба вывода (например, скрытой переменной) oi для некоторого полностью подключенного слоя без нелинейностей. С девятью входными данными xj и их соответствующими весами wij для этого слоя выход определяется как
oi = Σnin j= 1 wijxj.                                                                        (5.8.3)
Все веса wij выводятся независимо от одного и того же распределения. Кроме того, предположим, что это распределение имеет нулевое среднее значение и дисперсию σ2. Обратите внимание, что это не означает, что распределение должно быть гауссовым, просто должны существовать среднее значение и дисперсия. А пока предположим, что входы в слой xj также имеют нулевое среднее значение и дисперсию γ2 и что они не зависят от wij и друг от друга. В этом случае мы можем вычислить среднее значение и дисперсию oi следующим образом:
E [oi] = ∑ninj = 1 E [wijxj] =Σninj = 1 E [wij] E [xj] = 0,
Var [oi] = E [o2i] - (E [oi]) 2 =Σninj = 1Е [w2ijx2j] - 0
            	 = Σninj = 1Е [w2ij] E [x2j] = ninσ2γ2,                                              (5.8.4)

Один из способов сохранить фиксированную дисперсию - установить ninσ2 = 1. Теперь рассмотрим обратное распространение. Здесь мы сталкиваемся с аналогичной проблемой, хотя градиенты распространяются от слоев ближе к выходу. Используя те же рассуждения, что и для прямого распространения, мы видим, что дисперсия градиентов может увеличиваться, если только noutσ2 = 1, где nout - количество выходов этого слоя. Это ставит нас перед дилеммой: мы не можем одновременно удовлетворить оба условия. Вместо этого мы просто пытаемся удовлетворить:
½ (nin + nout) σ2 = 1 или эквивалентно σ = √2/nin + nout,           (5.8.5)
Это рассуждение, лежащее в основе теперь стандартной и практически полезной инициализации Xavier, названной в честь первого автора его создателей (Glorot & Bengio, 2010). Как правило, инициализация Ксавье выбирает веса из гауссовского распределения с нулевым средним и дисперсией σ2 = 2/ nin + nout. Мы можем также адаптировать интуицию Ксавье для выбора дисперсии при выборке весов из равномерного распределения. Отметим, что равномерное распределение U (−a, a) имеет дисперсию a2/3. Подключение a2/3 в наше условие на σ2 предлагает инициализацию в соответствии с
U(-√6/(nin + nout),√6/(nin + nout)),                                                    (5.8.6)
Хотя предположение об отсутствии нелинейностей в приведенных выше математических рассуждениях может быть легко нарушено в нейронных сетях, на практике оказывается, что метод инициализации Xavier хорошо работает.
Beyond 
Приведенные выше рассуждения едва ли касаются поверхности современных подходов к инициализации параметров. Фреймворк глубокого обучения часто реализует более десятка различных эвристик. Более того, инициализация параметров продолжает оставаться горячей областью фундаментальных исследований в области глубокого обучения.
Среди них эвристика, специализированная для связанных (общих) параметров, сверхвысокого разрешения, моделей последовательностей и других ситуаций. Например, Xiao et al. продемонстрировали возможность обучения 10000-слойных нейронных сетей без хитрости с использованием тщательно продуманного метода инициализации (Xiao et al., 2018).
Если эта тема вас интересует, мы предлагаем глубоко погрузиться в предложения этого модуля, прочитать статьи, в которых предлагается и проанализировать каждую эвристику, а затем изучить последние публикации по этой теме.
Возможно, вы наткнетесь или даже придумаете умную идею и внесете свой вклад в реализацию фреймворков глубокого обучения.
Резюме
· Исчезающие и растущие градиенты - распространенные проблемы в глубоких сетях. Требуется большая осторожность при инициализации параметров, чтобы гарантировать, что градиенты и параметры остаются хорошо управляемыми.
· Эвристика инициализации необходима, чтобы гарантировать, что начальные градиенты не будут ни слишком большими, ни слишком маленькими.
· Функции активации ReLU смягчают проблему исчезающего градиента. Это может ускорить конвергенцию.
· Случайная инициализация - ключ к нарушению симметрии перед оптимизацией.
· Инициализация Xavier предполагает, что для каждого слоя на дисперсию любого выхода не влияет количество входов, а на дисперсию любого градиента не влияет количество выходов.
Упражнения
1. Можете ли вы разработать другие случаи, когда нейронная сеть могла бы демонстрировать симметрию, требующую нарушения помимо симметрии перестановки в слоях MLP?
2. Можем ли мы инициализировать все весовые параметры в линейной регрессии или в регрессии softmax для такого же значения?
3. Найдите аналитические оценки собственных значений произведения двух матриц. Что это говорит вам об обеспечении хорошей обработки градиентов?
4. Если мы знаем, что некоторые термины расходятся, можем ли мы исправить это постфактум? Для вдохновения посмотрите статью о послойном адаптивном масштабировании скорости (You et al., 2017).
Обсуждение (см. https://discuss.d2l.ai/t/103)
5.9. Изменение среды и распределения
В предыдущих разделах мы работали с рядом практических приложений машинного обучения, подгоняя модели к различным наборам данных. И все же мы никогда не останавливались, чтобы задуматься о том, откуда в первую очередь берутся данные, или о том, что мы планируем в конечном итоге делать с результатами наших моделей. Слишком часто разработчики машинного обучения, владеющие данными, спешат разработать модели, не останавливаясь на рассмотрении этих фундаментальных проблем.
Многие неудачные развертывания машинного обучения можно проследить до этого шаблона. Иногда кажется, что модели превосходно работают, если судить по точности набора тестов, но катастрофически терпят неудачу при развертывании, когда распределение данных внезапно меняется. Что еще более коварно, иногда само развертывание модели может быть катализатором, нарушающим распределение данных. Скажем, например, мы обучили модель предсказывать, кто выплатит ссуду, а кто не приведет к дефолту по кредиту, обнаружив, что выбор обуви кандидатом был связан с риском дефолта (оксфорды указывают на погашение кредита, а кроссовки на дефолт). В дальнейшем мы должны быть склонны предоставлять ссуды всем заявителям, носящим оксфорды, и отказывать всем заявителям, кто носит кроссовки.
В этом случае наш необдуманный переход от распознавания образов к принятию решений и наша неспособность критически рассмотреть окружающую среду могут иметь катастрофические последствия. Во-первых, как только мы начинаем принимать решения на основе обуви, покупатели улавливают и изменяют свое поведение. Вскоре все кандидаты будут носить оксфорды без какого-либо улучшения кредитоспособности. Найдите минутку, чтобы переварить это, потому что подобные проблемы встречаются во многих приложениях машинного обучения: вводя наши решения, основанные на модели, в среду, мы можем сломать модель.
Хотя мы не можем полностью рассмотреть эти темы в одном разделе, мы стремимся выявить некоторые общие проблемы и стимулировать критическое мышление, необходимое для раннего обнаружения таких ситуаций, уменьшения ущерба и ответственного использования машинного обучения. Некоторые решения просты (запросите «правильные» данные), некоторые технически сложны (реализовать систему обучения с подкреплением), а другие требуют, чтобы мы вообще вышли за рамки статистического прогнозирования и взялись за сложные философские вопросы, касающиеся этического применение алгоритмов.
5.9.1. Типы сдвига распределения 
Для начала мы придерживаемся настройки пассивного прогнозирования, учитывая различные способы изменения распределения данных и того, что можно сделать для восстановления производительности модели. В одной классической установке мы предполагаем, что наши обучающие данные были взяты из некоторого распределения pS (x, y), но наши тестовые данные будут состоять из немаркированных примеров, взятых из некоторого другого распределения pT (x, y). Мы уже должны противостоять отрезвляющей реальности. При отсутствии каких-либо предположений о том, как pS и pT связаны друг с другом, изучение надежного классификатора невозможно.
Рассмотрим задачу бинарной классификации, в которой мы хотим различать собак и кошек.
Если распределение может изменяться произвольным образом, то наша установка допускает патологический случай, в котором распределение по входам остается постоянным: pS (x) = pT (x), но все метки меняются местами: pS (y | x) = 1 - pT (y | x). Другими словами, если Бог может внезапно решить, что в будущем все «кошки» теперь являются собаками, а то, что мы раньше называли «собаками», теперь стали кошками - без каких-либо изменений в распределении входных данных p (x), тогда мы не сможем различить эта настройка из той, в которой раздача вообще не менялась.
К счастью, при некоторых ограниченных предположениях о том, как наши данные могут измениться в будущем, принципиальные алгоритмы могут обнаруживать сдвиг и иногда даже адаптироваться на лету, повышая точность исходного классификатора.


Ковариантный сдвиг
Среди категорий сдвига распределения ковариантный сдвиг может быть наиболее изученным. Здесь мы предполагаем, что, хотя распределение входных данных может меняться со временем, функция маркировки, то есть условное распределение P (y | x), не изменяется. Статистики называют это ковариантным сдвигом, потому что проблема возникает из-за сдвига в распределении ковариант (признаков). Хотя иногда мы можем рассуждать о сдвиге распределения, не прибегая к причинно-следственной связи, мы отмечаем, что ковариантный сдвиг - это естественное допущение, которое следует вызывать в условиях, когда мы считаем, что x вызывает y.
Рассмотрим проблему различения кошек и собак. Наши обучающие данные могут состоять из изображений, представленных на рис. 5.9.1. (См. рисунок в книге)
Обучающий набор состоит из фотографий, а тестовый - только из мультфильмов. Обучение на наборе данных с характеристиками, существенно отличающимися от набора тестов, может привести к проблемам при отсутствии последовательного плана адаптации к новой области.
Label Shift
Сдвиг метки описывает обратную проблему. Здесь мы предполагаем, что маргинальное значение метки P (y) может измениться, но классово-условное распределение P (x | y) остается фиксированным во всех областях. Сдвиг метки - это разумное предположение, когда мы считаем, что y вызывает x., например, мы можем захотеть предсказать диагнозы с учетом их симптомов (или других проявлений), даже если относительная распространенность диагнозов со временем меняется. Сдвиг метки здесь является уместным предположением, потому что болезни вызывают симптомы. В некоторых вырожденных случаях предположения о сдвиге метки и ковариантном сдвиге могут выполняться одновременно. Например, если метка является детерминированной, предположение ковариантного сдвига будет выполнено, даже если y вызывает x. Интересно, что в этих случаях часто бывает выгодно работать с методами, вытекающими из предположения о смене метки. Это связано с тем, что эти методы, как правило, включают манипулирование объектами, которые выглядят как метки (часто низкоразмерные), в отличие от объектов, которые выглядят как входные данные, которые при глубоком обучении имеют тенденцию быть многомерными.
Концептуальный сдвиг
Мы также можем столкнуться с связанной с этим проблемой сдвига понятий, которая возникает, когда могут измениться сами определения ярлыков. Звучит странно - кошка есть кошка, не так ли? Однако использование других категорий может изменяться с течением времени. Диагностические критерии психического заболевания, то, что считается модным, и названия должностей подвержены значительному изменению концепций. Оказывается, если мы будем перемещаться по Соединенным Штатам, сместив источник наших данных по географическому принципу, мы обнаружим значительный сдвиг в концепции распределения названий безалкогольных напитков, как показано на рис. 5.9.3. (См. рисунок в книге.)
Если бы мы создали систему машинного перевода, распределение P (y | x) могло бы отличаться в зависимости от нашего местоположения. Эту проблему бывает сложно обнаружить. Мы могли бы надеяться использовать знания о том, что сдвиг происходит постепенно, во временном или географическом смысле.
5.9.2. Примеры сдвига распределения
Прежде чем углубляться в формализм и алгоритмы, мы можем обсудить некоторые конкретные ситуации, в которых изменение ковариации или концепции может быть неочевидным.
Медицинская диагностика
Представьте, что вы хотите разработать алгоритм для обнаружения рака. Вы собираете данные от здоровых и больных людей и тренируете свой алгоритм. Он отлично работает, дает вам высокую точность, и вы делаете вывод, что вы готовы к успешной карьере в области медицинской диагностики. Не так быстро.
Распределения, которые привели к тренировочным данным, и те, с которыми вы столкнетесь в дикой природе, могут значительно отличаться. Это случилось с неудачным стартапом, с которым некоторые из нас (авторов) работали много лет назад. Они разрабатывали анализ крови на заболевание, которое преимущественно поражает пожилых мужчин, и надеялись изучить его, используя образцы крови, взятые у пациентов. Однако получить образцы крови у здоровых мужчин значительно сложнее, чем у больных, уже находящихся в системе. Чтобы компенсировать это, стартап запросил донорство крови у студентов университетского городка, чтобы они могли служить здоровым контролем при разработке своего теста. Затем они спросили, можем ли мы помочь им в создании классификатора для выявления болезни.
Как мы объяснили им, действительно было бы легко отличить когорты здоровых от больных с почти идеальной точностью. Однако это связано с тем, что испытуемые различались по возрасту, уровню гормонов, физической активности, диете, потреблению алкоголя и многим другим факторам, не связанным с заболеванием. Вряд ли это могло случиться с реальными пациентами. Из-за их процедуры выборки мы могли ожидать столкнуться с экстремальным ковариантным сдвигом. Более того, этот случай вряд ли можно исправить обычными методами. Короче, они потратили зря значительную сумму денег.
Самоходные автомобили
Допустим, компания хотела использовать машинное обучение для разработки беспилотных автомобилей. Одним из ключевых компонентов здесь является придорожный детектор. Поскольку получение реальных аннотированных данных обходится дорого, у них возникла (умная и сомнительная) идея использовать синтетические данные из движка рендеринга игр в качестве дополнительных обучающих данных. Это действительно хорошо сработало на «тестовых данных», взятых из движка рендеринга. Увы, в реальной машине это была катастрофа. Как оказалось, обочина дороги была визуализирована с очень упрощенной текстурой. Что еще более важно, вся обочина была визуализирована с одинаковой текстурой, и придорожный детектор очень быстро узнал об этой «особенности».
Похожая история произошла с армией США, когда они впервые попытались обнаружить танки в лесу. Сделали аэрофотосъемку леса без танков, потом танки загнали в лес и сняли еще один набор картинок. Классификатор работал отлично. К сожалению, он просто научился отличать деревья с тенями от деревьев без теней - первый набор изображений был снят ранним утром, второй - в полдень.
Нестационарные распределения
Гораздо более тонкая ситуация возникает, когда распределение изменяется медленно (также известное как нестационарное распределение) и модель не обновляется должным образом. Ниже приведены некоторые типичные случаи.
· Мы обучаем вычислительную рекламную модель, а затем не можем часто ее обновлять (например, мы забываем указать, что только что было выпущено малоизвестное новое устройство под названием iPad).
· Строим спам-фильтр. Он хорошо работает при обнаружении всего спама, который мы видели до сих пор. Но затем спамеры поумнели и создают новые сообщения, которые не похожи ни на что из того, что мы видели раньше.
· Мы строим систему рекомендаций по продуктам. Он работает всю зиму, но затем продолжает рекомендовать шляпы Санты еще долго после Рождества.
Еще анекдоты
· Строим детектор лиц. Он хорошо работает на всех тестах. К сожалению, это не удается на тестовых данных - оскорбительные примеры - это крупные планы, когда лицо заполняет все изображение (таких данных в обучающей выборке не было).
· Мы создаем поисковую систему для рынка США и хотим развернуть ее в Великобритании.
· Мы обучаем классификатор изображений, составляя большой набор данных, где каждый из большого набора классов одинаково представлен в наборе данных, скажем, 1000 категорий, каждая из которых представлена ​​1000 изображениями. Затем мы развертываем систему в реальном мире, где фактическое распределение меток фотографий явно неоднородны.

5.9.3. Корректировка сдвига распределения
Как мы уже говорили, существует много случаев, когда обучающее и тестовое распределения P (x, y) различны. В некоторых случаях нам везет, и модели работают, несмотря на изменение ковариации, метки или концепции.
В других случаях мы можем добиться большего, применяя принципиальные стратегии, чтобы справиться со сдвигом. Остальная часть этого раздела становится более технической. Нетерпеливый читатель может перейти к следующему разделу, поскольку этот материал не является предпосылкой для последующих концепций.
Эмпирический риск и истинный риск
Давайте сначала поразмышляем о том, что именно происходит во время обучения модели: мы перебираем функции и связанные метки обучающих данных {(x1, y1),. , , , (xn, yn)} и обновите параметры модели f после каждой мини-партии. Для простоты мы не рассматриваем регуляризацию, поэтому в значительной степени минимизируем потери на обучение:
minimizef 1/n ∑ni=1 l(f(xi), yi),                                                      (5.9.1)
где l - функция потерь, измеряющая «насколько плохой» прогноз f (xi), которому присвоена соответствующая метка yi. Статистики называют термин в (5.9.1) эмпирическим риском. Эмпирический риск - это средняя потеря по обучающим данным для аппроксимации истинного риска, который представляет собой ожидание потерь по всей совокупности данных, взятых из их истинного распределения p (x, y):
Ep(х, у) [l (f (x), y)] = ∫ ∫ l (f (x), y) p (x, y) dxdy.                          (5.9.2)
Однако на практике мы обычно не можем получить всю совокупность данных. Таким образом, минимизация эмпирического риска, которая сводит к минимуму эмпирический риск в (4.9.1), является практической стратегией машинного обучения с надеждой приблизиться к минимизации истинного риска.
Коррекция ковариантного сдвига
Предположим, что мы хотим оценить некоторую зависимость P (y | x), для которой мы пометили данные (xi, yi).
К сожалению, наблюдения xi взяты из некоторого исходного распределения q(x), а не целевого распределения p (x). К счастью, предположение о зависимости означает, что условное распределение не меняется: p (y | x) = q(y | x). Если исходное распределение q (x) является «неправильным», мы можем исправить это, используя следующую простую идентификацию в истинном риске:
∫ ∫ l (f (x), y) p (y | x) p (x) dxdy = 
∫ ∫ l (f (x), y) q (y | x) q (x) р (х)/q (х)dхdу.                          (5.9.3)

Другими словами, нам нужно повторно взвесить каждую точку данных по отношению вероятности того, что она была бы получена из правильного распределения к вероятности из неправильного:
βi def = р (хi)/q (xi),                                                                (5.9.4)
Добавляя вес βi для каждой точки данных (xi, yi), мы можем обучить нашу модель, используя взвешенную минимизацию эмпирического риска:
minimizef 1/n ∑ni=1 βi l(f (xi), yi).                                         (5.9.5)
Увы, мы не знаем этого соотношения, поэтому, прежде чем мы сможем сделать что-нибудь полезное, нам нужно его оценить. Доступно множество методов, включая несколько причудливых теоретико-операторных подходов, которые пытаются перекалибровать оператор математического ожидания напрямую с использованием принципа минимальной нормы или максимума энтропии.
Обратите внимание, что для любого такого подхода нам нужны выборки, взятые из обоих распределений - «истинного» p, например, путем доступа к тестовым данным, и того, который используется для генерации обучающего набора q (последний доступен тривиально). Однако обратите внимание, что нам нужны только функции x ∼ p (x); нам не нужно обращаться к меткам y ∼ p (y).
В этом случае существует очень эффективный подход, который даст почти такие же хорошие результаты, как и исходный: логистическая регрессия, которая является частным случаем регрессии softmax для двоичной классификации.
Это все, что нужно для вычисления оценочных отношений вероятности. Мы изучаем классификатор, чтобы различать данные, полученные из p (x), и данные, полученные из q (x). Если невозможно различить два распределения, это означает, что связанные экземпляры с равной вероятностью происходят из любого из двух распределений. С другой стороны, любые примеры, которые могут быть хорошо различимы, должны быть соответственно значительно переоценены или недооценены. Для простоты предположим, что у нас есть равное количество экземпляров из обоих распределений p (x) и q (x) соответственно. Теперь обозначьте z метки, которые равны 1 для данных, взятых из p, и -1 для данных, взятых из q. Тогда вероятность в смешанном наборе данных определяется выражением
Р (z = 1 | х) = р (х)/(р (х) + q (х)) и, следовательно, 
P (z = 1 | x)/Р (z = -1 | х) = р (х)/q (х),                                      (5.9.6)

Таким образом, если мы используем подход логистической регрессии, где P(z = 1 | x) = 1/(1 + exp (−h (x))) (h - параметризованная функция), отсюда следует, что
βi = 1 / (1 + ехр (−h (xi)))/(ехр (−h (xi)) / (1 + ехр (−h (xi)))) 
    = ехр (h (xi)).                                                                          (5.9.7)

В результате нам нужно решить две проблемы: первую, чтобы различать данные, полученные из обоих распределений, а затем задачу минимизации взвешенного эмпирического риска в (5.9.5), где мы взвешиваем слагаемые βi.
Теперь мы готовы описать алгоритм коррекции. Предположим, что у нас есть обучающий набор {(x1, y1),. , , , (xn, yn)} и немаркированный тестовый набор {u1,. , , , um}. Для ковариантного сдвига мы предполагаем, что xi для всех 1 ≤ i ≤ n взяты из некоторого исходного распределения, а ui для всех 1 ≤ i ≤ m взяты из целевого распределения. Вот прототипный алгоритм исправления ковариантного сдвига:
1. Сгенерируйте обучающий набор бинарной классификации: {(x1, −1),..., (xn, −1), (u1, 1),…, (um, 1)}.
2. Обучите бинарный классификатор с помощью логистической регрессии, чтобы получить функцию h.
3. Взвесьте тренировочные данные, используя βi = exp (h (xi)) или лучше βi = min (exp (h (xi)), c) для некоторой константы c.
4. Используйте веса βi для тренировки на {(x1, y1), …, (xn, yn)} в (5.9.5).
Обратите внимание, что приведенный выше алгоритм основан на важном предположении. Чтобы эта схема работала, нам нужно, чтобы каждая точка данных в целевом распределении (например, время тестирования) имела ненулевую вероятность появления во время обучения. Если мы найдем точку, где p (x)> 0, но q (x) = 0, то соответствующий вес важности должен быть бесконечным.
Предположим, что мы имеем дело с задачей классификации с k категориями. Используя те же обозначения в разделе 5.9.3, q и p - это исходное распределение (например, время обучения) и целевое распределение (например, время теста) соответственно. Предположим, что распределение меток меняется со временем: q (y) ̸ = p (y), но условное распределение классов остается неизменным: q (x | y) = p (x | y). Если исходное распределение q (y) является «неправильным», мы можем исправить это в соответствии со следующим тождеством истинного риска, как определено в (5.9.2):
∫ ∫ l (f (x), y) p (x | y) p (y) dxdy 
                           = ∫ ∫ l (f (x), y) q (x | y) q (y)р (у)/q (у) dхdу.            (5.9.8)
Здесь наши веса важности будут соответствовать отношениям правдоподобия ярлыков.
βi def = р (у)/d (у),                                                                         (5.9.9)
Хорошая особенность смещения меток заключается в том, что если у нас есть достаточно хорошая модель распределения источников, то мы можем получить согласованные оценки этих весов, даже не имея дело с окружающим измерением. При глубоком обучении входными данными обычно являются объекты большой размерности, такие как изображения, в то время как метки часто представляют собой более простые объекты, такие как категории.
Чтобы оценить целевое распределение меток, мы сначала берем наш достаточно хороший стандартный классификатор (обычно обученный на обучающих данных) и вычисляем его матрицу неточностей, используя набор проверки (также из обучающего распределения). Матрица неточности C - это просто матрица размера k × k, где каждый столбец соответствует категории метки (основная истина), а каждая строка соответствует категории, предсказанной нашей моделью. Значение cij каждой ячейки - это доля от общего числа прогнозов на проверочном наборе, где истинная метка была j, а наша модель предсказала i.
Теперь мы не можем вычислить матрицу путаницы для целевых данных напрямую, потому что мы не можем видеть метки для примеров, которые мы видим в дикой природе, если мы не инвестируем в сложный конвейер аннотаций в реальном времени. Однако мы можем усреднить все прогнозы наших моделей во время тестирования вместе, давая средние выходные данные модели µ (yˆ) ∈ Rk, i-й элемент которого µ (ˆyi) представляет собой долю от общего числа прогнозов на тестовом наборе, где наша модель предсказывала i. Оказывается, что при некоторых мягких условиях - если наш классификатор с самого начала был достаточно точным, и если целевые данные содержат только категории, которые мы видели раньше, и если предположение о сдвиге метки выполняется в первую очередь (самое сильное предположение здесь ), то мы можем оценить распределение меток тестового набора, решив простую линейную систему
Cp (y) = µ (yˆ),                                                                  (5.9.10)
поскольку в качестве оценки ∑kj = 1 cijp (yj) = µ (ˆyi) выполняется для всех 1 ≤ i ≤ k, где p (yj) - j-й элемент k-мерного вектора распределения меток p (y). Если наш классификатор для начала достаточно точен, тогда матрица неточностей C будет обратимой, и мы получим решение p (y) = C− 1µ (yˆ).
Поскольку мы наблюдаем метки на исходных данных, легко оценить распределение q (y). Затем для любого обучающего примера i с меткой yi мы можем взять отношение нашего оцененного p (yi) / q (yi), чтобы вычислить вес βi, и вставить его в взвешенную минимизацию эмпирического риска в (5.9.5).
Концептуальная коррекция сдвига
Сдвиг концепций гораздо сложнее исправить принципиальным образом. Например, в ситуации, когда проблема внезапно меняется с отличия кошек от собак на проблему отличия белых от черных животных, будет неразумно предполагать, что мы можем добиться большего, чем просто собирать новые ярлыки и обучать с нуля. К счастью, на практике такие экстремальные сдвиги редки. Вместо этого обычно происходит то, что задача продолжает медленно меняться. Чтобы сделать вещи более конкретными, вот несколько примеров:
· В компьютерной рекламе запускаются новые продукты, старые становятся менее популярными. Это означает, что распределение объявлений и их популярность постепенно меняются, и любой прогнозирующий показатель CTR должен постепенно меняться вместе с ним.
· Объективы дорожных камер постепенно изнашиваются из-за износа окружающей среды, что постепенно влияет на качество изображения.
· Содержание новостей меняется постепенно (т.е. большинство новостей остается без изменений, но появляются новые статьи).
В таких случаях мы можем использовать тот же подход, который мы использовали для обучения сетей, чтобы заставить их адаптироваться к изменению данных. Другими словами, мы используем существующие веса сети и просто выполняем несколько шагов обновления с новыми данными, а не обучаем с нуля.
5.9.4. Таксономия проблем обучения
Вооружившись знаниями о том, как поступать с изменениями в дистрибутивах, мы теперь можем рассмотреть некоторые другие аспекты постановки задач машинного обучения.
Пакетное обучение
При пакетном обучении у нас есть доступ к функциям обучения и меткам {(x1, y1),. , , , (xn, yn)}, который мы используем для обучения модели f (x). Позже мы используем эту модель для оценки новых данных (x, y), взятых из того же распределения. Это предположение по умолчанию для любой из обсуждаемых здесь проблем. Например, мы можем обучить детектор кошек на основе большого количества изображений кошек и собак. После обучения мы отправляем его как часть интеллектуальной системы компьютерного зрения с дверью для кошек, которая пропускает только кошек. Затем она устанавливается в доме клиента и больше никогда не обновляется (за исключением чрезвычайных обстоятельств).
Онлайн обучение
Теперь представьте, что данные (xi, yi) поступают по одной выборке за раз. Более конкретно, предположим, что мы сначала наблюдаем xi, затем нам нужно прийти к оценке f (xi), и только после того, как мы это сделаем, мы наблюдаем yi, и с его помощью мы получаем вознаграждение или несем убытки, учитывая наше решение. В эту категорию попадают многие реальные проблемы. Например, нам нужно спрогнозировать цену акций на завтра, это позволяет нам торговать на основе этой оценки, и в конце дня мы выясняем, позволила ли наша оценка нам получить прибыль. Другими словами, в онлайн-обучении у нас есть следующий цикл, в котором мы постоянно улучшаем нашу модель с учетом новых наблюдений.
модель ft - → данные xt - → оценка ft (xt) - → наблюдение yt – 
→ потеря l (yt, ft (xt)) - → модель ft + 1                          (5.9.11)
Бандиты
Бандиты - частный случай проблемы, описанной выше. Хотя в большинстве задач обучения у нас есть непрерывно параметризованная функция f, где мы хотим узнать ее параметры (например, глубокая сеть), в проблеме бандитов у нас есть только конечное количество рук, которые мы можем тянуть, то есть конечное количество действий, которые мы можем предпринять. Неудивительно, что для этой более простой задачи могут быть получены более сильные теоретические гарантии оптимальности. Мы перечисляем это в основном потому, что с этой проблемой часто (что сбивает с толку) трактуют, как если бы это была отдельная обучающая среда.
Контроль
Во многих случаях окружение помнит то, что мы сделали. Не обязательно враждебно, но он просто запомнит, и ответ будет зависеть от того, что произошло раньше. Например, контроллер кофейного бойлера будет наблюдать разные температуры в зависимости от того, нагревал ли он бойлер ранее. Здесь популярны алгоритмы PID -регулятора (пропорционально-интегрально-производная). Здесь популярны алгоритмы PID -регулятора (пропорционально-интегрально-производная). Точно так же поведение пользователя на новостном сайте будет зависеть от того, что мы ему показали ранее (например, большую часть новостей он прочитает только один раз). Многие такие алгоритмы образуют модель среды, в которой они действуют, чтобы их решения казались менее случайными. В последнее время теория управления (например, варианты PID) также использовалась для автоматической настройки гиперпараметров для достижения лучшего качества распутывания и реконструкции, а также улучшения разнообразия сгенерированного текста и качества реконструкции сгенерированных изображений (Shao et al., 2020).
Обучение с подкреплением 
В более общем случае среды с памятью мы можем столкнуться с ситуациями, когда среда пытается сотрудничать с нами (совместные игры, в частности, для игр с ненулевой суммой), или с другими ситуациями, когда среда будет пытаться победить. Шахматы, Gо, нарды или StarCraft - вот некоторые из примеров обучения с подкреплением. Точно так же мы могли бы создать хороший контроллер для автономных автомобилей. Другие автомобили, вероятно, будут реагировать на стиль вождения автономного автомобиля нетривиальным образом, например, пытаясь избежать его, пытаясь вызвать аварию и пытаясь сотрудничать с ним.
Учет окружающей среды 
Другая вышеупомянутая ситуация заключается в том, что та же самая стратегия, которая могла бы работать повсюду в случае стационарной среды, может не работать повсюду, когда среда может адаптироваться. Например, возможность арбитража, открытая трейдером, скорее всего, исчезнет, как только он начнет ею пользоваться. Скорость и способ изменения среды в значительной степени определяют тип алгоритмов, которые мы можем применить. Например, если мы знаем, что вещи могут меняться только медленно, мы можем заставить любую оценку изменяться очень медленно. Если мы знаем, что окружающая среда может меняться мгновенно, но очень редко, мы можем это сделать. Эти типы знаний имеют решающее значение для начинающего специалиста по данным, чтобы справиться со сдвигом концепции, то есть когда проблема, которую он пытается решить, со временем меняется.
5.9.5. Справедливость, подотчетность и прозрачность в машинном обучении
Наконец, важно помнить, что при развертывании систем машинного обучения вы не просто оптимизируете прогнозную модель, вы обычно предоставляете инструмент, который будет использоваться для (частично или полностью) автоматизации решений. Эти технические системы могут влиять на жизнь людей в зависимости от принимаемых решений. Переход от рассмотрения прогнозов к решениям поднимает не только новые технические вопросы, но и множество этических вопросов, которые необходимо тщательно рассмотреть. Если мы развертываем медицинскую диагностическую систему, нам необходимо знать, для каких групп населения она может работать, а для каких - нет. Если мы упускаем из виду предсказуемые риски для благосостояния какой-то подгруппы населения, это может привести к тому, что мы будем оказывать менее качественную помощь. Более того, как только мы задумаемся о системах принятия решений, мы должны сделать шаг назад и пересмотреть то, как мы оцениваем наши технологии. Среди других последствий этого изменения масштаба мы обнаружим, что точность редко бывает правильной мерой. Например, преобразовывая прогнозы в действия, мы часто хотим учитывать потенциальную чувствительность к стоимости различных ошибок. Если один из способов неправильной классификации изображения может быть воспринят как расовая ловкость рук, а неправильная классификация в другую категорию будет безвредной, тогда мы, возможно, захотим соответствующим образом скорректировать наши пороговые значения с учетом социальных ценностей при разработке протокола принятия решений. Мы также хотим быть осторожными с тем, как предсказание системы могут приводить к петлям обратной связи. Например, рассмотрим системы прогнозирования полиции, которые распределяют патрульных по районам с высоким прогнозом преступности. Легко увидеть, как может возникнуть тревожный паттерн:
1. Районы с повышенным уровнем преступности получают больше патрулей.
2. Следовательно, в этих районах выявляется больше преступлений, и вводятся обучающие данные, доступные для будущих итераций.
3. Модель, подверженная большему количеству положительных моментов, предсказывает рост преступности в этих районах.
4. В следующей итерации обновленная модель нацелена на тот же район, что еще больше приведет к раскрытию еще большего числа преступлений и т. д.
Часто различные механизмы, с помощью которых прогнозы модели связаны с ее обучающими данными, не учитываются в процессе моделирования. Это может привести к тому, что исследователи называют неконтролируемыми петлями обратной связи. Кроме того, мы хотим быть осторожными в том, решаем ли мы правильную проблему в первую очередь. Алгоритмы прогнозирования теперь играют огромную роль в распространении информации. Должны ли новости, с которыми сталкивается человек, определяться набором понравившихся ему страниц в Facebook? Это лишь некоторые из множества неотложных этических дилемм, с которыми вы можете столкнуться в карьере в области машинного обучения.
Резюме
· Во многих случаях наборы для обучения и тестирования не относятся к одному и тому же распределению. Это называется сдвигом распределения.
· Истинный риск - это ожидание потерь для всей совокупности данных, извлеченных из их истинного распределения. Однако все это население обычно недоступно. Эмпирический риск - это средняя потеря по обучающим данным, приближающая истинный риск. На практике мы выполняем минимизацию эмпирического риска.
· При соответствующих предположениях коварианта и сдвиг метки могут быть обнаружены и исправлены во время тестирования. Неспособность учесть эту систематическую ошибку может стать проблематичной во время тестирования.
· В некоторых случаях среда может запоминать автоматические действия и реагировать неожиданным образом. Мы должны учитывать эту возможность при построении моделей и продолжать отслеживать живые системы, открывая возможность того, что наши модели и окружающая среда будут запутаны непредвиденным образом.
Упражнения
1. Что может случиться, если мы изменим поведение поисковой системы? Что могут сделать пользователи? А как насчет рекламодателей?
2. Реализуйте детектор ковариантного сдвига. Подсказка: создайте классификатор.
3. Реализуйте ковариантный корректор сдвига.
4. Помимо сдвига распределения, что еще может повлиять на то, насколько эмпирический риск приближается к истинному риску?
Обсуждение (см. https://discuss.d2l.ai/t/105)
5.10. Прогнозирование цен на жилье на Kaggle
Теперь, когда мы представили некоторые базовые инструменты для построения и обучения глубоких сетей и их упорядочения с помощью методов, включая снижение веса и отсев, мы готовы применить все эти знания на практике, приняв участие в соревновании Kaggle. Соревнования по прогнозированию цен на жилье - отличное место для начала. Данные довольно общие и не имеют экзотической структуры, которая может потребовать специализированных моделей (как аудио или видео). Этот набор данных, собранный Барт де Кок в 2011 году (DeCock, 2011), охватывает цены на жилье в Эймсе, штат Айова, за период 2006–2010 годов. Это значительно больше, чем знаменитый набор данных о жилищном строительстве в Бостоне Харрисона и Рубинфельда (1978), которые могут похвастаться как большим количеством примеров, так и большим количеством функций.
В этом разделе мы подробно расскажем о предварительной обработке данных, проектировании модели и выборе гиперпараметров. Мы надеемся, что благодаря практическому подходу вы обретете некоторую интуицию, которая поможет вам в вашей карьере специалиста по данным.
5.10.1. Загрузка и кэширование наборов данных
На протяжении всей курса мы будем обучать и тестировать модели на различных загруженных наборах данных. Здесь мы реализуем несколько служебных функций для облегчения загрузки данных. Во-первых, мы поддерживаем словарь DATA_HUB, который отображает строку (имя набора данных) в кортеж, содержащий как URL-адрес для поиска набора данных, так и ключ SHA-1, который проверяет целостность файла. Все такие наборы данных размещаются на сайте с адресом DATA_URL.
import os
import requests
import zipfile
import tarfile
import hashlib
DATA_HUB = dict() #@save
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/' #@save
75 https://discuss.d2l.ai/t/105
76 https://archive.ics.uci.edu/ml/machine-learning databases/housing/housing.names

Следующая функция загрузки загружает набор данных, кэширует его в локальном каталоге (по умолчанию ../data) и возвращает имя загруженного файла. Если файл, соответствующий этому набору данных, уже существует в каталоге кеша и его SHA-1 совпадает с SHA-1, хранящимся в DATA_HUB, наш код будет использовать кешированный файл, чтобы избежать засорения вашего Интернета избыточными загрузками.
def download(name, cache_dir=os.path.join('..', 'data')): #@save
"""Download a file inserted into DATA_HUB, return the local filename."""
assert name in DATA_HUB, f"{name} does not exist in {DATA_HUB}."
url, sha1_hash = DATA_HUB[name]
d2l.mkdir_if_not_exist(cache_dir)
fname = os.path.join(cache_dir, url.split('/')[-1])
if os.path.exists(fname):
sha1 = hashlib.sha1()
with open(fname, 'rb') as f:
while True:
data = f.read(1048576)
if not data:
break
sha1.update(data)
if sha1.hexdigest() == sha1_hash:
return fname # Hit cache
print(f'Downloading {fname} from {url}...')
r = requests.get(url, stream=True, verify=True)
with open(fname, 'wb') as f:
f.write(r.content)
return fname

Мы также реализуем две дополнительные служебные функции: одна предназначена для загрузки и извлечения файла zip или tar, а другая - для загрузки всех наборов данных, используемых в этой книге, из DATA_HUB в каталог кеша.
def download_extract(name, folder=None): #@save
"""Download and extract a zip/tar file."""
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname)
if ext == '.zip':
fp = zipfile.ZipFile(fname, 'r')
elif ext in ('.tar', '.gz'):
fp = tarfile.open(fname, 'r')
else:
assert False, 'Only zip/tar files can be extracted.'
fp.extractall(base_dir)
return os.path.join(base_dir, folder) if folder else data_dir
def download_all(): #@save
"""Download all files in the DATA_HUB."""
for name in DATA_HUB:
download(name)

5.10.2. Kaggle
Kaggle - популярная платформа, на которой проводятся соревнования по машинному обучению. Каждый конкурс основан на наборе данных, и многие из них спонсируются заинтересованными сторонами, которые предлагают призы за победившие решения. Платформа помогает пользователям взаимодействовать через форумы и общий код, способствуя как сотрудничеству, так и конкуренции. В то время как погоня за списком лидеров часто выходит из-под контроля, когда исследователи близоруко сосредотачиваются на этапах предварительной обработки, а не задают фундаментальные вопросы, также огромное значение имеет объективность платформы, которая облегчает прямые количественные сравнения между конкурирующими подходами, а также совместное использование кода, чтобы каждый мог узнать, что работало, а что не работало. Если вы хотите участвовать в соревнованиях Kaggle, вам сначала необходимо зарегистрировать учетную запись (см. Рис. 5.10.1).
На странице конкурса прогнозов цен на жилье, как показано на рис. 5.10.2, вы можете найти набор данных (на вкладке «Данные»), отправить прогнозы и увидеть свой рейтинг. URL-адрес находится прямо здесь:
https://www.kaggle.com/c/house-prices-advanced-regression-techniques 
[image: ]
Рис. 5.10.1: Веб-сайт Kaggle.
[image: ]
Рис. 5.10.2: Страница конкурса прогнозов цен на жилье.
Доступ и чтение набора данных 
Обратите внимание, что данные о соревнованиях разделены на наборы для обучения и тестирования. Каждая запись включает значение свойства дома и такие атрибуты, как тип улицы, год постройки, тип крыши, состояние подвала и т. д. Функции состоят из различных типов данных. Например, год постройки представлен целым числом, тип крыши - дискретным категориальным назначением, а другие характеристики - числами с плавающей запятой. И вот здесь реальность усложняет ситуацию: для некоторых примеров некоторые данные вообще отсутствуют, а отсутствующее значение помечено просто как «na». В стоимость каждого домика включен только тренировочный набор (это ведь соревнование). Мы захотим разделить обучающий набор для создания набора для проверки, но мы сможем оценить наши модели только на официальном наборе тестов после загрузки прогнозов в Kaggle. Вкладка «Данные» на вкладке конкурса на рис. 5.10.2 содержит ссылки для загрузки данных.
Для начала мы прочитаем и обработаем данные с помощью pandas, которые мы представили в Разделе 2.2. Итак, вам нужно убедиться, что у вас установлены панды, прежде чем продолжить. К счастью, если вы читаете в Jupyter, мы можем установить панды, даже не выходя из ноутбука.
# If pandas is not installed, please uncomment the following line:
# !pip install pandas
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import gluon, autograd, init, np, npx
from mxnet.gluon import nn
import pandas as pd
npx.set_np()

Для удобства мы можем загрузить и кэшировать набор данных о жилье Kaggle, используя сценарий, который мы определили выше.
DATA_HUB['kaggle_house_train'] = ( #@save
DATA_URL + 'kaggle_house_pred_train.csv',
'585e9cc93e70b39160e7921475f9bcd7d31219ce')
DATA_HUB['kaggle_house_test'] = ( #@save
DATA_URL + 'kaggle_house_pred_test.csv',
'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')

Мы используем pandas для загрузки двух файлов csv, содержащих данные для обучения и тестирования соответственно.
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
Downloading ../data/kaggle_house_pred_train.csv from http://d2l-data.s3-accelerate.amazonaws.
,→com/kaggle_house_pred_train.csv...
Downloading ../data/kaggle_house_pred_test.csv from http://d2l-data.s3-accelerate.amazonaws.
,→com/kaggle_house_pred_test.csv...

Набор обучающих данных включает 1460 примеров, 80 функций и 1 метку, а тестовые данные содержат 1459 примеров и 80 функций.
print(train_data.shape)
print(test_data.shape)
(1460, 81)
(1459, 80)

Давайте посмотрим на первые четыре и последние две функции, а также на метку (SalePrice) из первых четырех примеров.
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
	
	Иденти
фикатор
	MSSub
Class
	MSЗони
рование
	ЛотФрон
тальная
	Тип
продажи
	Условия
Продажи
	Цена
продажи

	0
	1
	60
	RL
	65.0
	WD
	Normal
	208500

	1
	2
	20
	RL
	80.0
	WD
	Normal
	181500

	2
	3
	60
	RL
	68.0
	WD
	Normal
	223500

	3
	4
	70
	RL
	60.0
	WD
	Abnorml
	140000



Мы видим, что в каждом примере первая функция - это идентификатор. Это помогает модели идентифицировать каждый обучающий пример. Это удобно, но не несет никакой информации для целей прогнозирования. Следовательно, мы удаляем его из набора данных перед подачей данных в модель.
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
5.10.3. Предварительная обработка данных
Как было сказано выше, у нас есть большое разнообразие типов данных. Прежде чем мы сможем приступить к моделированию, нам нужно будет предварительно обработать данные. Начнем с числовых характеристик. Сначала мы применяем эвристику, заменяя все отсутствующие значения средним значением соответствующей функции. Затем, чтобы привести все функции к общему масштабу, мы стандартизируем данные, масштабируя функции до нулевого среднего и единичной дисперсии:
x ← (х - µ)/σ,                                                                        (5.10.1)
Чтобы убедиться, что это действительно преобразует нашу функцию (переменную) таким образом, что она имеет нулевое среднее значение и единичную дисперсию, обратите внимание, что 
E [(х-μ)/σ] = (µ − µ)/σ = 0 и что E [(x − µ)2] = (σ2 + µ2) -2μ2 + µ2 = σ2. 
Наглядно, мы стандартизируем данные по двум причинам. Во-первых, это удобно для оптимизации. Во-вторых, поскольку мы априори не знаем, какие функции будут релевантными, мы не хотим штрафовать коэффициенты, назначенные одной функции, больше, чем любой другой.
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(
lambda x: (x - x.mean()) / (x.std()))

# После стандартизации данных все средства исчезнут, поэтому мы можем установить пропущенные значения до 0

all_features [numeric_features] = all_features [numeric_features] .fillna (0)
Далее мы имеем дело с дискретными значениями. Сюда входят такие функции, как «MSZoning». Мы заменяем их быстрым кодированием таким же образом, как мы ранее преобразовывали метки мультиклассов в векторы (см. Раздел 3.4.1). Например, «MSZoning» принимает значения «RL» и «RM». При отказе от функции «MSZoning» создаются две новые функции индикатора «MSZoning_RL» и «MSZoning_RM» со значениями, равными 0 или 1. Согласно однократному кодированию, если исходным значением «MSZoning» является «RL», то « MSZoning_RL »равно 1, а« MSZoning_RM »- 0. Пакет pandas делает это автоматически за нас.
# `Dummy_na = True` считает" na "(отсутствующее значение) допустимым значением функции, и
# создает для него функцию индикатора all_features = pd.get_dummies (all_features, dummy_na = True)
all_features.shape
(2919, 331)

Вы можете видеть, что это преобразование увеличивает количество функций с 79 до 331. Наконец, с помощью атрибута values ​​мы можем извлечь формат NumPy из формата pandas и преобразовать его в формат тензорного представления для обучения.
n_train = train_data.shape [0]
train_features = np.array (all_features [: n_train] .values, dtype = np.float32)
test_features = np.array (all_features [n_train:]. values, dtype = np.float32)
train_labels = np.array (
train_data.SalePrice.values.reshape (-1, 1), dtype = np.float32)

5.10.4. Обучение
Для начала обучим линейную модель с квадратом потерь. Неудивительно, что наша линейная модель не приведет к победе в конкурсе, но она обеспечивает проверку работоспособности, чтобы увидеть, есть ли в данных значимая информация. Если здесь мы не можем сделать лучше, чем случайное угадывание, то есть большая вероятность, что у нас есть ошибка обработки данных. И если что-то сработает, линейная модель будет служить базой, давая нам некоторую интуицию о том, насколько простая модель приближается к лучшим моделям, о которых сообщают, что дает нам представление о том, какой выгоды мы должны ожидать от более привлекательных моделей.
loss = gluon.loss.L2Loss()
def get_net():
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize()
return net

В отношении цен на жилье, как и в случае цен на акции, мы больше заботимся об относительных количествах, чем об абсолютных. Таким образом, мы склонны больше заботиться об относительной ошибке (y − yˆ)/y, чем об абсолютной ошибке y - yˆ.
Например, если наш прогноз не соответствует 100 000 долларов США при оценке цены дома в сельской местности Огайо, где стоимость типичного дома составляет 125 000 долларов США, то мы, вероятно, делаем ужасную работу.
С другой стороны, если мы ошибемся на эту сумму в Лос-Альтос-Хиллз, Калифорния, это может представлять потрясающе точный прогноз (там средняя цена дома превышает 4 миллиона долларов США).
Один из способов решения этой проблемы - измерить расхождение в логарифмах оценок цен. Фактически, это также официальная мера погрешности, используемая конкурентами для оценки качества представленных материалов. Ведь малое значение δ для | log y - log yˆ | ≤ δ переводится в e−δ ≤ yˆ/y ≤ eδ. Это приводит к следующей среднеквадратической ошибке между логарифмом прогнозируемой цены и логарифмом цены этикетки:
(1/n ∑ni = 1 (log yi - log yˆi)2)1/2,                                                           (5.10.2)
def log_rmse(net, features, labels):
# Для дальнейшей стабилизации значения после логарифмирования установите значение меньше 1 как 1
clipped_preds = np.clip(net(features), 1, float('inf'))
return np.sqrt(2 * loss(np.log(clipped_preds), np.log(labels)).mean())

В отличие от предыдущих разделов, наши обучающие функции будут полагаться на оптимизатор Adam (мы опишем его более подробно позже). Основная привлекательность этого оптимизатора заключается в том, что, несмотря на то, что он не работает лучше (а иногда и хуже) при неограниченных ресурсах для оптимизации гиперпараметров, люди склонны обнаруживать, что он значительно менее чувствителен к начальной скорости обучения.
def train (net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = d2l.load_array ((train_features, train_labels), batch_size)

# Здесь используется алгоритм оптимизации Адама
trainer = gluon.Trainer(net.collect_params(), 'adam', {
'learning_rate': learning_rate, 'wd': weight_decay})
for epoch in range(num_epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls

5.10.5. Перекрестная проверка K-Fold
Как вы помните, мы представили K-кратную перекрестную проверку в разделе, где мы обсуждали, как работать с выбором модели (раздел 5.4). Мы применим это к выбору дизайна модели и корректировке гиперпараметров. Сначала нам нужна функция, которая возвращает i-ю кратность данных в K-кратной процедуре перекрестной проверки. Он продолжается путем вырезания i-го сегмента в качестве данных проверки и возврата остальных в качестве данных обучения. Обратите внимание, что это не самый эффективный способ обработки данных, и мы определенно сделали бы что-то более умное, если бы наш набор данных был значительно больше. Но эта дополнительная сложность может без надобности запутать наш код, поэтому мы можем спокойно опустить его здесь из-за простоты нашей проблемы.
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = np.concatenate([X_train, X_part], 0)
y_train = np.concatenate([y_train, y_part], 0)
return X_train, y_train, X_valid, y_valid

Средние значения ошибок обучения и проверки возвращаются, когда мы обучаем K раз в K-кратной перекрестной проверке.
def k_fold(k, X_train, y_train, num_epochs,
learning_rate, weight_decay, batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.plot(list(range(1, num_epochs+1)), [train_ls, valid_ls],
xlabel='epoch', ylabel='rmse',
legend=['train', 'valid'], yscale='log')
print(f'fold {i + 1}, train log rmse {float(train_ls[-1]):f}, '
f'valid log rmse {float(valid_ls[-1]):f}')
return train_l_sum / k, valid_l_sum / k

5.10.6. Выбор модели
В этом примере мы выбираем ненастроенный набор гиперпараметров и оставляем читателю возможность улучшить модель. Поиск хорошего выбора может занять время, в зависимости от того, сколько переменных оптимизируется. При достаточно большом наборе данных и обычных гиперпараметрах K-кратная перекрестная проверка имеет тенденцию быть достаточно устойчивой к множественному тестированию. Однако, если мы попробуем неоправданно большое количество вариантов, нам может просто повезти, и мы обнаружим, что наша эффективность проверки больше не отражает истинную ошибку.
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,
weight_decay, batch_size)
print(f'{k}-fold validation: avg train log rmse: {float(train_l):f}, '
f'avg valid log rmse: {float(valid_l):f}')
fold 1, train log rmse 0.169854, valid log rmse 0.157272
fold 2, train log rmse 0.161957, valid log rmse 0.188484
fold 3, train log rmse 0.163386, valid log rmse 0.167722
fold 4, train log rmse 0.167667, valid log rmse 0.154572

fold 5, train log rmse 0.162538, valid log rmse 0.182737 5-fold validation: avg train log rmse: 0.165080, avg valid log rmse: 0.170157
Обратите внимание, что иногда количество ошибок обучения для набора гиперпараметров может быть очень низким, даже если количество ошибок при K-кратной перекрестной проверке значительно выше. Это указывает на то, что мы переоснащаемся. Во время тренировки вам нужно будет следить за обоими числами. Меньшее переоснащение может означать, что наши данные могут поддерживать более мощную модель. Массовое переоснащение может означать, что мы можем выиграть, используя методы регуляризации.
5.10.7. Отправка прогнозов на Kaggle
Теперь, когда мы знаем, каким должен быть хороший выбор гиперпараметров, мы можем использовать все данные для обучения на нем (а не только 1–1 / K данных, которые используются в срезах перекрестной проверки).
Модель, которую мы получаем таким образом, затем можно применить к тестовой выборке. Сохранение прогнозов в файле csv упростит загрузку результатов в Kaggle.
def train_and_pred(train_features, test_feature, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None,
num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
ylabel='log rmse', yscale='log')
print(f'train log rmse {float(train_ls[-1]):f}')
# Apply the network to the test set
preds = d2l.numpy(net(test_features))
# Reformat it to export to Kaggle
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)

Одна хорошая проверка работоспособности - увидеть, похожи ли прогнозы на тестовом наборе на те, которые получены при K-кратной перекрестной проверке. Если они это сделают, пора загрузить их в Kaggle. Следующий код сгенерирует файл с именем submission.csv.
train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size)
train log rmse 0.162503

Затем, как показано на рис. 5.10.3 (см. рисунок в книге), мы можем представить наши прогнозы на Kaggle и посмотреть, как они соотносятся с фактическими ценами на жилье (метками) на тестовом наборе. Шаги довольно простые:
· Войдите на сайт Kaggle и посетите страницу конкурса прогнозов цен на жилье.
· Нажмите кнопку «Отправить прогнозы» или «Поздняя отправка» (на момент написания эта кнопка находится справа).
· Нажмите кнопку «Загрузить файл для отправки» в пунктирной рамке внизу страницы и выберите файл прогноза, который вы хотите загрузить.
· Нажмите кнопку «Отправить» внизу страницы, чтобы просмотреть результаты.
Резюме
· Реальные данные часто содержат смесь разных типов данных и требуют предварительной обработки.
· Изменение масштаба данных с действительными значениями до нулевого среднего и единичной дисперсии является хорошим значением по умолчанию. Таким образом, пропущенные значения заменяются их средним значением.
· Преобразование категориальных характеристик в характеристики индикаторов позволяет нам рассматривать их как горячие векторы.
· Мы можем использовать перекрестную проверку в K-кратном порядке для выбора модели и настройки гиперпараметров.
· Логарифмы полезны для относительных ошибок.
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Рис. 5.10.3: Отправка данных в Kaggle
Упражнения
1. Отправьте свои прогнозы для этого раздела в Kaggle. Насколько хороши ваши прогнозы?
2. Можете ли вы улучшить свою модель, напрямую минимизируя логарифм цен? Что произойдет, если вы попытаетесь предсказать логарифм цены, а не цену?
3. Всегда ли заменять отсутствующие значения их средними значениями? Подсказка: можете ли вы создать ситуацию, когда значения не пропадают случайно?
4. Повысьте оценку Kaggle, настроив гиперпараметры с помощью K-кратной перекрестной проверки.
5. Повысьте оценку, улучшив модель (например, слои, снижение веса и отсев).
6. Что произойдет, если мы не стандартизируем непрерывные числовые функции, как то, что мы сделали в этом разделе?
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